Publication

Geometry-Driven Stock-Constrained Truss Design via Equilibrium-Based Structural Models

Abstract

This paper presents a geometry-driven approach to form-finding with reused stock elements. Our proposed workflow uses a K-mean algorithm to cluster stock elements and incorporate their geometrical values early in the form-finding process. A feedback loop improves the reuse rate over multiple iterations, and a best-fit heuristic algorithm is used to examine the reuse states. A detailed example and a case study demonstrate the efficacy of the method. This results in a form-finding method with reused stock elements; hence, promoting sustainable design and reducing environmental impact in the built environment.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Root-finding algorithms
In mathematics and computing, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f, from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros, expressed either as floating-point numbers or as small isolating intervals, or disks for complex roots (an interval or disk output being equivalent to an approximate output together with an error bound).
Direction finding
Direction finding (DF), or radio direction finding (RDF), is - in accordance with International Telecommunication Union (ITU) - defined as radio location that uses the reception of radio waves to determine the direction in which a radio station or an object is located. This can refer to radio or other forms of wireless communication, including radar signals detection and monitoring (ELINT/ESM). By combining the direction information from two or more suitably spaced receivers (or a single mobile receiver), the source of a transmission may be located via triangulation.
Reuse of human excreta
Reuse of human excreta is the safe, beneficial use of treated human excreta after applying suitable treatment steps and risk management approaches that are customized for the intended reuse application. Beneficial uses of the treated excreta may focus on using the plant-available nutrients (mainly nitrogen, phosphorus and potassium) that are contained in the treated excreta. They may also make use of the organic matter and energy contained in the excreta.
Show more
Related publications (32)

Structural Design from Reclaimed Material Sauvabelin – The Never-Ending Story

Benoît Pascal Kälin

This thesis is developed as part of the final year project that must be completed to obtain the MCs degree in Civil Engineering at EPFL. It follows up the pre-study project carried out during the last semester of the course. The environmental crisis that o ...
2022

Zürich Stadtspital Triemli Personalhäuser – Resource assessment of structural elements

Corentin Jean Dominique Fivet, Maléna Bastien Masse, Célia Marine Küpfer, Julie Rachel Devènes

The Triemli Personalhäuser are three equal 15-story buildings located on the Zürich Triemli Stadtspital campus and erected between 1964 and 1969. Cast-in-place reinforced concrete (RC) slabs and walls form the building cores and their surrounding corridors ...
EPFL2022

Comparison of environmental assessment methods when reusing building components: a case study

Corentin Jean Dominique Fivet, Endrit Hoxha, Catherine Elvire L. De Wolf

The building industry is responsible for 35% of all solid waste in Europe and more than a third of greenhouse gas (GHG) emissions. To address this, applying circular economy principles to the building sector is crucial, for example by reusing building elem ...
2020
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.