Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Existing standards for delamination tests on composite materials typically employ one-dimensional (1D) beam specimens. However, such specimens may not represent real delamination scenarios in composite structures, where cracks tend to propagate in two dimensions. To address this limitation and compare the delamination behavior under both 1D and two-dimensional (2D) Mode-II fracture conditions, a numerical investigation was carried out based on previous experiments. A novel cohesive zone model, considering both microcracking and fiber bridging within the fracture process zone, was developed using a semi-experimental approach and incorporated in three-dimensional finite element simulations. According to the numerical results, the investigated laminates exhibited similar maximum strain energy release rates in both 1D and 2D delamination; however, different traction-separation responses were obtained. Practical methods of locating the tip of an embedded crack were proposed based on curvature and strain measurements on the laminate surface, demonstrating potential for application in structures with irregular crack shapes.
Thomas Keller, Anastasios Vassilopoulos, Congzhe Wang