Publication

KNNs of Semantic Encodings for Rating Prediction

Léo Jules Laugier
2023
Conference paper
Abstract

This paper explores a novel application of textual semantic similarity to user-preference representation for rating prediction. The approach represents a user's preferences as a graph of textual snippets from review text, where the edges are defined by semantic similarity. This textual, memory-based approach to rating prediction enables review-based explanations for recommendations. The method is evaluated quantitatively, highlighting that leveraging text in this way outperforms both strong memory-based and model-based collaborative filtering baselines.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (25)
Semantic memory
Semantic memory refers to general world knowledge that humans have accumulated throughout their lives. This general knowledge (word meanings, concepts, facts, and ideas) is intertwined in experience and dependent on culture. New concepts are learned by applying knowledge learned from things in the past. Semantic memory is distinct from episodic memory—the memory of experiences and specific events that occur in one's life that can be recreated at any given point.
Semantic similarity
Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content as opposed to lexicographical similarity. These are mathematical tools used to estimate the strength of the semantic relationship between units of language, concepts or instances, through a numerical description obtained according to the comparison of information supporting their meaning or describing their nature.
Autobiographical memory
Autobiographical memory (AM) is a memory system consisting of episodes recollected from an individual's life, based on a combination of episodic (personal experiences and specific objects, people and events experienced at particular time and place) and semantic (general knowledge and facts about the world) memory. It is thus a type of explicit memory. Conway and Pleydell-Pearce (2000) proposed that autobiographical memory is constructed within a self-memory system (SMS), a conceptual model composed of an autobiographical knowledge base and the working self.
Show more
Related publications (33)

TempSAL - Uncovering Temporal Information for Deep Saliency Prediction

Sabine Süsstrunk, Mathieu Salzmann, Tong Zhang, Bahar Aydemir, Ludo Hoffstetter

Deep saliency prediction algorithms complement the object recognition features, they typically rely on additional information, such as scene context, semantic relationships, gaze direction, and object dissimilarity. However, none of these models consider t ...
2023

Computational models of episodic-like memory in food-caching birds

Wulfram Gerstner, Johanni Michael Brea

How the 'what', 'where', and 'when' of past experiences are stored in episodic memories and retrieved for suitable decisions remains unclear. In an effort to address these questions, the authors present computational models of neural networks that behave l ...
NATURE PORTFOLIO2023

Bodily self-consciousness as a framework to link sensory information and self-related components of episodic memory: behavioral, neuroimaging, and clinical evidence

Nathalie Heidi Meyer

The recollection of sensory information and subjective experience related to a personal past event depends on our episodic memory (EM). At the neural level, EM retrieval is linked with the reinstatement of hippocampal activity thought to recollect the sens ...
EPFL2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.