Publication

Model Predictive Control for Multi-Agent Systems under Limited Communication and Time-Varying Network Topology

Abstract

In control system networks, reconfiguration of the controller when agents are leaving or joining the network is still an open challenge, in particular when operation constraints that depend on each agent's behavior must be met. Drawing our motivation from mobile robot swarms, in this paper, we address this problem by optimizing individual agent performance while guaranteeing persistent constraint satisfaction in presence of bounded communication range and time-varying network topology. The approach we propose is a model predictive control (MPC) formulation, building on multi-trajectory MPC (mt-MPC) concepts. To enable plug and play operations when the system is in closed-loop without the need of a request, the proposed MPC scheme predicts two different state trajectories in the same finite horizon optimal control problem. One trajectory drives the system to the desired target, assuming that the network topology will not change in the prediction horizon, while the second one ensures constraint satisfaction assuming a worst-case scenario in terms of new agents joining the network in the planning horizon. Recursive feasibility and stability of the closed-loop system during plug and play operations are shown. The approach effectiveness is illustrated with a numerical simulation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Model predictive control
Model predictive control (MPC) is an advanced method of process control that is used to control a process while satisfying a set of constraints. It has been in use in the process industries in chemical plants and oil refineries since the 1980s. In recent years it has also been used in power system balancing models and in power electronics. Model predictive controllers rely on dynamic models of the process, most often linear empirical models obtained by system identification.
Intelligent agent
In artificial intelligence, an intelligent agent (IA) is an agent acting in an intelligent manner; It perceives its environment, takes actions autonomously in order to achieve goals, and may improve its performance with learning or acquiring knowledge. An intelligent agent may be simple or complex: A thermostat or other control system is considered an example of an intelligent agent, as is a human being, as is any system that meets the definition, such as a firm, a state, or a biome.
Closed-loop controller
A closed-loop controller or feedback controller is a control loop which incorporates feedback, in contrast to an open-loop controller or non-feedback controller. A closed-loop controller uses feedback to control states or outputs of a dynamical system. Its name comes from the information path in the system: process inputs (e.g., voltage applied to an electric motor) have an effect on the process outputs (e.g., speed or torque of the motor), which is measured with sensors and processed by the controller; the result (the control signal) is "fed back" as input to the process, closing the loop.
Show more
Related publications (57)

Data-Driven Control and Optimization under Noisy and Uncertain Conditions

Baiwei Guo

Control systems operating in real-world environments often face disturbances arising from measurement noise and model mismatch. These factors can significantly impact the perfor- mance and safety of the system. In this thesis, we aim to leverage data to de ...
EPFL2023

Hybrid Quadratic Programming - Pullback Bundle Dynamical Systems Control

Aude Billard, Bernardo Fichera

Dynamical System (DS)-based closed-loop control is a simple and effective way to generate reactive motion policies that well generalize to the robotic workspace, while retaining stability guarantees. Lately the formalism has been expanded in order to handl ...
SPRINGER INTERNATIONAL PUBLISHING AG2023

Data-driven and Safe Networked Control with Applications to Microgrids

Mustafa Sahin Turan

Today, automatic control is integrated into a wide spectrum of real-world systems such as electrical grids and transportation networks. Many of these systems comprise numerous interconnected agents, perform safety-critical operations, or generate large amo ...
EPFL2022
Show more
Related MOOCs (31)
Intro to Traffic Flow Modeling and Intelligent Transport Systems
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Intro to Traffic Flow Modeling and Intelligent Transport Systems
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Information, Calcul, Communication: Introduction à la pensée informatique
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.