Publication

Vapor compression and energy dissipation in a collapsing laser-induced bubble

Abstract

The composition of the gaseous phase of cavitation bubbles and its role on the collapse remains to date poorly understood. In this work, experiments of single cavitation bubbles in aqueous ammonia serve as a novel approach to investigate the effect of the vapor contained in a bubble on its collapse. We find that the higher vapor pressure of more concentrated aqueous ammonia acts as a resistance to the collapse, reducing the total energy dissipation. In line with visual observation, acoustic measurements, and luminescence recordings, it is also observed that higher vapor pressures contribute to a more spherical collapse, likely hindering the growth of interface instabilities by decreasing the collapse velocities and accelerations. Remarkably, we evidence a strong difference between the effective damping and the energy of the shock emission, suggesting that the latter is not the dominant dissipation mechanism at collapse as predicted from classical correction models accounting for slightly compressible liquids. Furthermore, our results suggest that the vapor inside collapsing bubbles gets compressed, consistently with previous studies performed in the context of single bubble sonoluminescence, addressing the question about the ability of vapors to readily condense during a bubble collapse in similar regimes. These findings provide insight into the identification of the influence of the bubble content and the energy exchanges of the bubble with its surrounding media, eventually paving the way to a more efficient use of cavitation in engineering and biomedical applications.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (38)
Cavitation
Cavitation is a phenomenon in which the static pressure of a liquid reduces to below the liquid's vapour pressure, leading to the formation of small vapor-filled cavities in the liquid. When subjected to higher pressure, these cavities, called "bubbles" or "voids", collapse and can generate shock waves that may damage machinery. These shock waves are strong when they are very close to the imploded bubble, but rapidly weaken as they propagate away from the implosion. Cavitation is a significant cause of wear in some engineering contexts.
Vapor-compression refrigeration
Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services.
Bubble (physics)
A bubble is a globule of a gas substance in a liquid. In the opposite case, a globule of a liquid in a gas, it's called a drop. Due to the Marangoni effect, bubbles may remain intact when they reach the surface of the immersive substance. Bubbles are seen in many places in everyday life, for example: As spontaneous nucleation of supersaturated carbon dioxide in soft drinks As water vapor in boiling water As air mixed into agitated water, such as below a waterfall As sea foam As a soap bubble As given off in chemical reactions, e.
Show more
Related publications (46)

The influence of the gas on the dynamics of cavitation bubbles

Davide Bernardo Preso

Cavitation bubbles, extensively investigated in fluid mechanics, present enduring challenges in hydraulic machinery, while holding considerable potential for practical applications in biomedicine and sonochemistry. Despite more than a century of research, ...
EPFL2023

Interactions of Cavitation Bubbles with Deformable Interfaces

Armand Baptiste Sieber

Cavitation is a topic that has long been of interest due to the large and growing range of applications associated with it. This is mainly because the collapse of cavitation bubbles releases a considerable amount of energy into the surrounding environment. ...
EPFL2023

Cavitation bubble dynamics and microjet atomization near tissue-mimicking materials

Mohamed Farhat, Davide Bernardo Preso, Armand Baptiste Sieber

In recent years, considerable interest has been devoted to the interactions between cavitation bubbles and tissue-mimicking materials due to their promising applications in medicine and biomedical sciences. The strong fluid-structure interaction between a ...
AIP Publishing2023
Show more
Related MOOCs (10)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.