Publication

Characterization of the gut-bone marrow axis through bile acid signaling

Alejandro Alonso Calleja
2024
EPFL thesis
Abstract

Communication between the intestine and other organs such as the lungs, brain or bones is mediated by several metabolites, like short-chain fatty acids or bile acids, that relay information about nutritional and microbiota status. Bile acids are endogenous surfactants that are key in the intestinal absorption of dietary fats. Bile acids also function as bona fide hormones mediating pleiotropic effects thanks to several receptors that are responsive to these molecules, including dedicated receptors such as farnesoid X receptor or Takeda G-protein receptor 5 (TGR5). TGR5 modulates the functions of both digestive and extra-digestive systems, regulating metabolism in a multitude of tissues. The effects of TGR5 have been described in a variety of cells, including adipocytes, osteoblasts and endothelial cells. Adipocytes, osteoblasts and endothelial cells are key components of the hematopoietic niche, a structure that regulates hematopoietic stem and progenitor cell function, including quiescence self-renewal and commitment towards differentiated cells. TGR5 has been described to have an immunomodulatory in cells of the myeloid lineage role but its effect on the bone marrow has not been described yet. The activity of the bone marrow is regulated by the microbiome as germ-free or antibiotic-treated mice show alterations in hematopoiesis. Since the bile acid pool shapes and is shaped by the microbiome, we hypothesize that bile acids serve as signalling molecules that modulate bone marrow activity.To unveil the potential communication of the gut and the bone marrow via bile acid signalling, we will focus on understanding the alterations in the bone marrow of mice lacking TGR5 using a combination of in vitro and in vivo approaches. For this project, we will first define the global impact of TGR5 on steady-state and stress hematopoiesis using a TGR5 KO murine model. We will then dissect the action of TGR5 in the bone marrow by separately evaluating its effect in the hematopoietic compartment and the niche. Finally, we will screen a library of bile acids to obtain insight into their potential for the improvement of hematopoietic recovery in situations of high demand. Our preliminary results indicate that the lack of TGR5 increases the number of hematopoietic cells in the bone marrow and decreases the short-term repopulating capacity of bone marrow cells upon bone marrow transplantation. Furthermore, it brings about changes in the bone marrow stroma as we have found an increase in adipogenic precursor cells concomitant with a decrease in osteochondrogenic progenitor cells. Moreover, our preliminary results indicate that stroma cells isolated from TGR5 KO mice might be less supportive of hematopoietic cell proliferation in vitro. Our ultimate goal is to use the knowledge obtained from this project to provide a basis to guide rational modifications of the microbiome and steer the production of bile acids in a demand-adapted manner. In doing so, our objective is to open novel therapeutic avenues to aid in the recovery of patients suffering from hematopoietic failure by harnessing the gut-bone marrow axis.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Bone marrow
Bone marrow is a semi-solid tissue found within the spongy (also known as cancellous) portions of bones. In birds and mammals, bone marrow is the primary site of new blood cell production (or haematopoiesis). It is composed of hematopoietic cells, marrow adipose tissue, and supportive stromal cells. In adult humans, bone marrow is primarily located in the ribs, vertebrae, sternum, and bones of the pelvis. Bone marrow comprises approximately 5% of total body mass in healthy adult humans, such that a man weighing 73 kg (161 lbs) will have around 3.
Hematopoietic stem cell
Hematopoietic stem cells (HSCs) are the stem cells that give rise to other blood cells. This process is called haematopoiesis. In vertebrates, the very first definitive HSCs arise from the ventral endothelial wall of the embryonic aorta within the (midgestational) aorta-gonad-mesonephros region, through a process known as endothelial-to-hematopoietic transition. In adults, haematopoiesis occurs in the red bone marrow, in the core of most bones. The red bone marrow is derived from the layer of the embryo called the mesoderm.
Hematopoietic stem cell transplantation
Hematopoietic stem-cell transplantation (HSCT) is the transplantation of multipotent hematopoietic stem cells, usually derived from bone marrow, peripheral blood, or umbilical cord blood in order to replicate inside of a patient and to produce additional normal blood cells. It may be autologous (the patient's own stem cells are used), allogeneic (the stem cells come from a donor) or syngeneic (from an identical twin). It is most often performed for patients with certain cancers of the blood or bone marrow, such as multiple myeloma or leukemia.
Show more
Related publications (131)

Accessible and highly observable gastrointestinal organoid model systems for studying host-pathogen interactions

Moritz Hofer

Traditional cell cultures have long been fundamental to biological research, offering an alternative to animal models burdened by ethical constraints and procedural intricacies, often lacking relevance to human physiology and disease. Moreover, their inabi ...
EPFL2024

An autologous antigen-agnostic dendritic cell therapy that forgoes antigen loading

Michele De Palma

We developed a method for generating dendritic cell progenitors (DCPs) from hematopoietic stem and progenitor cells isolated from bone marrow or blood. When engineered to express IL-12 and FLT3L, these DCPs reprogram the tumor microenvironment and elicit a ...
Berlin2024

Disruption of stem cell niche-confined R-spondin 3 expression leads to impaired hematopoiesis

Freddy Radtke, Ute Koch, Jialin Zhang, Soufiane Boumahdi

Self-renewal and differentiation of stem and progenitor cells are tightly regulated to ensure tissue homeostasis. This regulation is enabled both remotely by systemic circulating cues, such as cytokines and hormones, and locally by various niche-confined f ...
ELSEVIER2023
Show more
Related MOOCs (22)
Introduction à l'immunologie (part 1)
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Show more