Publication

Osmosis-driven stiffening of structured hydrogels

Abstract

Plant cells harness osmotic pressures to stiffen their leaves through strong turgor pressures. Key to this osmosisdriven stiffening is the confinement of liquids within semipermeable membranes that can regulate the transport of water molecules and ions. Inspired by the turgor effect in plants, we fabricate rather stiff hydrogels with inclusions and fill them with polyelectrolytes possessing a high degree of swelling. The swelling of these polyelectrolytes is spatially confined by the stiffer inert hydrogel surrounding, resulting in an up to three-fold increase in the stiffness of these structured hydrogels compared to that of the matrix with water-filled inclusions. We leverage osmotic pressure gradients to change the morphology of cm-sized hydrogel leaves by immersing their bottom parts in water, without the need for additional stimuli that consume energy or require a change in the environmental conditions. Similarly, we exploit the osmosis-driven stiffening to release a ball. We foresee these materials to open up new possibilities to actuate soft materials in a benign, energy-efficient manner.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.