Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Beliefs inform the behaviour of forward-thinking agents in complex environments. Recently, sequential Bayesian inference has emerged as a mechanism to study belief formation among agents adapting to dynamical conditions. However, we lack critical theory to explain how preferences evolve in cases of simple agent interactions. In this paper, we derive a Gaussian, pairwise agent interaction model to study how preferences converge when driven by observation of each other's behaviours. We show that the dynamics of convergence resemble an Ornstein-Uhlenbeck process, a common model in nonequilibrium stochastic dynamics. Using standard analytical and computational techniques, we find that the hyperprior magnitudes, representing the learning time, determine the convergence value and the asymptotic entropy of the preferences across pairs of agents. We also show that the dynamical variance in preferences is characterised by a relaxation time t∗ and compute its asymptotic upper bound. This formulation enhances the existing toolkit for modeling stochastic, interactive agents by formalising leading theories in learning theory, and builds towards more comprehensive models of open problems in principal-agent and market theory.
Philippe Schwaller, Oliver Tobias Schilter, Andres Camilo Marulanda Bran, Carlo Baldassari
Olga Fink, Yuan Tian, Qin Wang