Publication

Partial discharge localization in power transformer tanks using machine learning methods

Abstract

This paper presents a comparison of machine learning (ML) methods used for three-dimensional localization of partial discharges (PD) in a power transformer tank. The study examines ML and deep learning (DL) methods, ranging from support vector machines (SVM) to more complex approaches like convolutional neural networks (CNN). Multiple case studies are considered, each with different attributes, including sensor position, frequency content of the PD signal, and size of the transformer tank. The paper focuses on predicting the PD location in three-dimensional space using single-sensor electric field measurements. Various aspects of each method are analyzed, such as the input signal, core methodology, correlation coefficient between the predicted location and the actual location, and root mean square error (RMSE). These features are discussed and compared across the different methods. The results indicate that the CNN model exhibits superior performance in terms of location accuracy among the methods considered.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.