Publication

First-principles thermodynamics of precipitation in aluminum-containing refractory alloys

Anirudh Raju Natarajan
2024
Journal paper
Abstract

Materials for high -temperature environments are actively being investigated for deployment in aerospace and nuclear applications. This study uses computational approaches to unravel the crystallography and thermodynamics of a promising class of refractory alloys containing aluminum. Accurate first -principles calculations, cluster expansion models, and statistical mechanics techniques are employed to rigorously analyze precipitation in a prototypical senary Al-Nb-Ta-Ti-V-Zr alloy. Finite -temperature calculations reveal a strong tendency for aluminum to segregate to a single sublattice at elevated temperatures. Precipitate and matrix compositions computed with our ab-initio model are in excellent agreement with previous experimental measurements (Soni et al., 2020). Surprisingly, conventional B2 -like orderings are found to be both thermodynamically and mechanically unstable in this alloy system. Complex anti -site defects are essential to forming a stable ordered precipitate. Our calculations reveal that the instability of B2 compounds can be related to a simple electron counting rule across all binary alloys formed by elements in groups 4,5, and 6. The results of this study provide viable routes toward designing high -temperature materials for deployment in extreme environments.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.