Publication

TEM study of interfacial reactions and precipitation mechanisms in Al2O3 short fibers or SiC particles reinforced Al-4Cu-1Mg-0.5Ag squeeze-cast composites

Cyril Cayron
2000
Thèse EPFL
Résumé

After more than a quarter of a century of active research, metal matrix composites (MMCs), and more particularly aluminum matrix composites (AMCs), are beginning to make a significant contribution to aerospace, automotive, and electronic industrial practice. This is the consequence of progresses in the development of processing techniques, and the result of advances in the understanding of the relationship between composite structure and mechanical behavior In the present work, two kinds of AMCs were elaborated by direct squeeze-casting for the assessment of their mechanical performance in view of potential applications for the automobile and electronic industry. They are based on a specifically designed precipitation hardening Al-4Cu-1Mg-O.5Ag alloy chosen for its promising mechanical properties at temperatures up to 200°C. A12O3 Saffil short fibers (15%-vol) on the one hand and SiC particles (60%-vol) on the other hand act as reinforcements. In the aim of a better understanding of the mechanical properties of the composites, their microstructure has been studied by transmission electron microscopy (TEM). The grain morphology and size, microsegregation and precipitation states of the composites have been investigated and compared with those of the unreinforced matrix alloy. Microsegregation, mainly of A12Cu, A17Cu2Fe and Q-A15Cu2Mg8Si6 phases, is observed in the as-cast composites at the interfaces between the matrix and the reinforcements. However, a solution heat treatment at 500°C for 2 hours leads to a significant dissolution of these phases. Although the unreinforced alloy was free of Si, this element is detected in the matrices of both composites. After a TEM study of the interfaces, it was deduced that Si is released from different interfacial reactions: (i) for the A12O3 reinforced composites, from a reaction between the Mg from the matrix alloy and the SiO2 from the Saffil fibers and the silica binder of the preform, and (ii) for the SiC reinforced composites, from a direct reaction between Al and the SiC particles with an indirect but important contribution of Mg to the reaction kinetics. As consequence of the chemical modification of the alloy, the precipitation state in the matrices of the composites has drastically changed. It was shown by energy dispersive spectrometry chemical analyses (EDS), high resolution electron microscopy (HREM), dedicated scanning transmission electron microscopy (DSTEM) and microdiffraction techniques that the usual Ω and S' hardening phases of the matrix alloy are substituted by a fine and dense precipitation of nano-sized QP rods and θ' plates. The θ' plates lie on nano-sized rod-shaped precipitates identified as Si phase in the A12O3 short fiber reinforced composite, and as QC phase in the SiC particle reinforced composite. The QP and QC phases are shown to be precursors of the stable Q-A15Cu2Mg8Si6 phase. They have both a hexagonal structure withal a = 0.393 nm and c = 0.405 nm, and with a = 0.675 nm and c = 0.405 nm, respectively for QP and QC. A structural phase transition between the QP, QC, Q rod-shaped precipitates in the matrices of the composites is observed and studied by TEM, DF superstructure imaging and in-situ experiment techniques. The details of this transition are shown to bring a new understanding to the precipitation mechanisms in the 6xxx alloys (AlMgSi alloys) in general. These ones are widely used as medium-strength structural alloys. The structures of the metastable phases that precipitate in these alloys have been largely described in literature, but the precipitation mechanims at atomic scale has not been well understood so far. In the present work, a model is developed from the crystallographic structure of the stable Q-phase determined by X-ray. It describes the QP, QC and Q structures as superordered structures formed by an order-disorder transition from a primitive phase named qp. The model predicts that a similar transition exists between all the metastable phases in the 6xxx alloys (β", β', B', type-A, type-B). For example, β' is supposed to be structurally similar to QC, with Si substituting Cu in the unit-cell. The latent lattices implied in the transitions are noted QP and βP for the matrices of the composites (AlCuMgSi alloys) and for the 6xxx alloys respectively. Microdiffraction patterns and superstructure DF images acquired on a CCD camera confirm the similarity between the QC and β' phases. After refinement by comparison between the experimental and computed microdiffraction patterns, their crystallography is found to be hexagonal P62m. Eventually, according to the model, the structural transitions in the AlCuMgSi and AlMgSi alloys are found to respectively follow the sequences qp →(QP →) QC→ Q and βp →(βP →) β'→ B' corresponding to the breaking symmetry path P63/mmc → P62m →P6. This sequence is respected during the cooling of the materials from the liquid state, and structurally mixed precipitates can be observed in the as-cast state, due to the slow kinetics of the transition (order/disorder transition). This sequence is also respected during the aging of the materials, since the small size of the precipitates is expected to reduce the critical temperature of transition. Monte Carlo simulations on an Ising lattice are computed to illustrate and confirm those effects.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Composite à matrice céramique
thumb|260px|Surface de cassure d'un composite constitué de fibres de SiC et d'une matrice de SiC.thumb|260px|Coussinets céramiques de paliers de diamètres de en CMC pour de grandes pompes. Les composites à matrice céramique ou CMC sont des matériaux composites faisant partie des céramiques techniques. Ils sont caractérisés par un ensemble de fibres céramiques incorporées dans une matrice également céramique. Fibres et matrice peuvent en principe être constituées de toutes les céramiques connues, en y incluant même le carbone.
Durcissement structural
Le durcissement structural est comme son nom l'indique un procédé permettant de durcir un alliage de métaux. Il nécessite un alliage métastable, dont la forme stable à température ambiante est un composé intermétallique constitué de deux phases différentes. Un recuit à l'intérieur du nez du diagramme TTT entraîne la germination de précipités de différentes nouvelles phases plus ou moins stables. Ces précipités, qu'ils soient cohérents ou incohérents avec la phase principale constituent des obstacles sur le chemin des dislocations ce qui augmente la dureté ainsi que les propriétés en traction du matériau.
Composite à matrice métallique
Un composite à matrice métallique (CMM) est un matériau réunissant deux éléments : une matrice métallique, par exemple en aluminium, magnésium, zinc ; un renfort métallique ou céramique, tel que des fils d’acier, particules de carbure de silicium (SiC), fibres de carbone, alumine. Les composites à matrice métallique ayant de la céramique comme renfort sont appelés « cermets ». Le sigle MMC signifie « Metal Matrix Composite », c'est-à-dire « composite à matrice métallique » ou CMM en français.
Afficher plus
Publications associées (162)

Composition and Element Distribution Mapping of γ′ and γ" Phases of Inconel 718 by High-Resolution Scanning Transmission Electron Microscopy and X-ray Energy-Dispersive Spectrometry

Philippe Buffat

The main strengthening mechanism for Inconel 718 (IN718), a Ni-based superalloy, is precipitation hardening by gamma ' and gamma '' particles. It is thus essential, for good alloy performance, that precipitates with the desired chemical composition have ad ...
Basel2024

In Situ and Time-Resolved Transmission Electron Microscopy of Nanoscale Processes

Chengcheng Yan

Observing the fast dynamics of nanoscale systems is crucial in order to understand and ultimately control their behavior. Characterizing these dynamic processes requires techniques with atomic spatial resolution and a temporal resolution that matches the t ...
EPFL2023

Micromechanics of oxide inclusions in ferrous alloys

Alejandra Inés Slagter

Oxide inclusions are inevitably present in steel as a direct consequence of the steelmaking process; as a result, a cubic centimetre of modern steel will generally contain about a million of these hard and brittle micrometre-sized ceramic particles. Inclus ...
EPFL2023
Afficher plus
MOOCs associés (18)
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.