Publication

Modeling of the residual stresses acting on a low-birefringence fiber Bragg grating sensor embeded in an epoxy matrix

Abstract

An optical fiber Bragg grating (FBG) embedded in an epoxy matrix is indubitably subjected to non-negligible residual stresses arising from the cure, especially for a strong fiber-matrix interface. The spectral response of the FBG sensor is clearly influenced by the presence of the residual non-homogeneous strain field along the grating and results in a distortion (chirp) of the reflected spectrum. Direct applications for distributed strain sensing, without tracking the residual field into account, can lead to inaccurate results. In the present work the reflected spectrum of a single FBG sensor embedded in an epoxy specimen at the end of the post-curing process is recorded and characterized using an analytical model which accounts for a distributed residual strain profile along the axial direction of the fiber. In addition an equivalent thermo-elastic problem for the matrix material is considered in finite elemetns simulations of the actual specimen. Both approaches show good agreement for the axial field, with some differences in the radial direction, presumably due to the simplifications introduced by the shear lag simplifications in the adopted analytical model. A level of about 20 MPa of compressive residual stresses is found in the vicinity of the fiber matrix interface.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.