Publication

Audio-Visual Speaker Tracking with Importance Particle Filters

Abstract

We present a probabilistic methodology for audio-visual (AV) speaker tracking, using an uncalibrated wide-angle camera and a microphone array. The algorithm fuses 2-D object shape and audio information via importance particle filters (I-PFs), allowing for the asymmetrical integration of AV information in a way that efficiently exploits the complementary features of each modality. Audio localization information is used to generate an importance sampling (IS) function, which guides the random search process of a particle filter towards regions of the configuration space likely to contain the true configuration (a speaker). The measurement process integrates contour-based and audio observations, which results in reliable head tracking in realistic scenarios. We show that imperfect single modalities can be combined into an algorithm that automatically initializes and tracks a speaker, switches between multiple speakers, tolerates visual clutter, and recovers from total AV object occlusion, in the context of a multimodal meeting room.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.