Publication

"Switch peptides"

Lydiane Jeanine Saucède
2006
EPFL thesis
Abstract

Despite of considerable progress in the research at the interface of Chemistry, Biology and Medicine, neurodegenerative diseases affect more and more seriously our ageing population and remain a real therapeutic challenge for researcher. Nevertheless, advances made in this field allow us to better understand the molecular mechanisms responsible for these disorders and to stress the involvement and the key-role of conformational changes of some proteins. Thought to be at the origin of Alzheimer's disease, amyloid-β peptide undergoes structural modifications leading to β-sheet structures, which further aggregate into toxic fibrils and plaques. However, intrinsic properties of these structures result in problems such as insolubility and self-aggregation limiting their experimental access. Among the main research lines to find an efficient therapeutic agent to fight against Alzheimer's disease, fibrillar inhibition is considered as promising strategy. It requires the use of a molecule, called β-breaker, which would be able to block the misfolding triggered by conformational transitions. Consequently, the present thesis is focusing on the design and chemical synthesis of potential inhibitors of amyloid-β fibrillogenesis. As a specific common feature, the designed compounds integrate in their chemical structure a short sequence ("nucleation site") derived from the central part of Aβ(1-42), allowing to specifically interact with the pathogenic peptide. We first envisaged to design cyclic peptides as potential inhibitors containing proline residues, known for its destabilizing effect upon secondary structures (way A). In collaboration with C. Soto et al., Univ. Galveston, the biological activity of the prototype cyclo(Lys-Leu-Pro-Phe-Phe-Glu) was tested. Most notably, electron microscopy, in collaboration with J. Dubochet and M. Adrian, UNIL, Congo red and thioflavin T staining, and CD studies pointed to the potential of cyclic peptides as Aβ inhibitors. Subsequently, conjugate peptides, assembling the recognition sequence of amyloid-β and organic molecules with potential to block fibrillogenesis were synthesized specifically. (+/-)-Trans-4-cotininecarboxylic acid, 3-indolebutyric acid and a tripeptide β-strand mimic were chosen. The biological assessment of these molecules allowed us to highlight their potential in this therapeutic strategy as well as the advantage given by the intercalation of a proline between the two components of these conjugates. In an effort to introduce in the structure of β-breakers a dynamization element, comparable to the cis/trans isomerization of proline, we designed a new type of β-breaking molecules according to strategy B (Figure). The elaboration of this innovating concept termed "switch-peptides" allows to controll the function of a polypeptide by using intramolecular acyl migration as switch-element for the in situ induction of structure and function. By combining an conformational induction unit σ, a switch element S (cysteine or serine) and an amyloid recognition sequence, we obtained a new generation of dynamic β-breakers. At the Soff state, the σ part was linked to the switch element S via an ester bond, deactivating the structural influence of the conformational induction unit on the target peptide, resulting in the absence of biological activity. By removing the protecting group Y from the amino function of the switch element, intramolecular acyl migration was triggered, restoring the native amide bond, setting off the impact of σ (Son state). In applying pseudo-prolines as β-breaking σ-elements (resulting in a "kink" conformation), the corresponding switch-peptide can adopt a recognition state (Soff) and a β-sheet disrupting state (Son), triggered by controlled acyl migration. We explored the use of cysteine as switch element, with special attention to the chemoselective synthesis, kinetics of acyl migration and potential for β-breaking. Interestingly, the S→N acyl migration proceeded very fast at physiological pH, in comparison to serine derived O→N migrations. Of utmost importance for further extensions of the switch-concept, the design of non peptidic S-elements such as trifunctionalized aromatic compounds would allow us to generate the β-breaking element in situ. As a first step, the intramolecular acyl migration O→N via an intermediate of 5, 6, 7 or 9 membered rings, as well as the reversibility of this reaction, was successfully demonstrated. In addition, enzymatically cleavable protecting groups Y for triggering acyl migrations were established. In conclusion, the present thesis presents some promising concepts in the design of fibril disrupting compounds of considerable therapeutical potential.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Protein secondary structure
Protein secondary structure is the local spatial conformation of the polypeptide backbone excluding the side chains. The two most common secondary structural elements are alpha helices and beta sheets, though beta turns and omega loops occur as well. Secondary structure elements typically spontaneously form as an intermediate before the protein folds into its three dimensional tertiary structure. Secondary structure is formally defined by the pattern of hydrogen bonds between the amino hydrogen and carboxyl oxygen atoms in the peptide backbone.
Protein structure
Protein structure is the three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers - specifically polypeptides - formed from sequences of amino acids, which are the monomers of the polymer. A single amino acid monomer may also be called a residue, which indicates a repeating unit of a polymer. Proteins form by amino acids undergoing condensation reactions, in which the amino acids lose one water molecule per reaction in order to attach to one another with a peptide bond.
Amyloid
Amyloids are aggregates of proteins characterised by a fibrillar morphology of typically 7–13 nm in diameter, a β-sheet secondary structure (known as cross-β) and ability to be stained by particular dyes, such as Congo red. In the human body, amyloids have been linked to the development of various diseases. Pathogenic amyloids form when previously healthy proteins lose their normal structure and physiological functions (misfolding) and form fibrous deposits within and around cells.
Show more
Related publications (116)

Methods for high-throughput synthesis and screening of peptide libraries

Zsolt Bognár

Macrocycles provide an attractive modality for drug development but the identification of ligands to targets of interest is hindered by the lack of large macrocyclic compound libraries for high-throughput screening. A strategy to efficiently synthesize lar ...
EPFL2024

Organic Dye Photocatalyzed Synthesis of Functionalized Lactones and Lactams via a Cyclization-Alkynylation Cascade

Jérôme Waser, Diana Cavalli

An organic dye photocatalyzed lactonization-alkynylation of easily accessible homoallylic cesium oxalates using ethynylbenziodoxolone (EBX) reagents has been developed. The reaction gave access to valuable functionalized lactones and lactams in up to 88% y ...
Amer Chemical Soc2024

Recombinant Full-Length TDP-43 Oligomers Retain Their Ability to Bind RNAs, Are Not Toxic, and Do Not Seed TDP-43 Aggregation in Vitro

Hilal Lashuel, Yllza Jasiqi, Lixin Yang

TAR DNA-binding protein with 43 kD (TDP-43) is a partially disordered protein that misfolds and accumulates in the brains of patients affected by several neurodegenerative diseases. TDP-43 oligomers have been reported to form due to aberrant misfolding or ...
Washington2023
Show more
Related MOOCs (9)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Show more