Many practical scenarios involve solving a social choice problem: a group of self-interested agents have to agree on an outcome that best fits their combined preferences. We assume that each outcome presents a certain utility to an agent and that the best outcome is the one that maximizes the sum of these utilities. We call a mechanism for solving social choice problems incentive-compatible if for each agent, the behavior that maximizes its own utility is also the one that maximizes the group’s utility. One way to achieve incentive-compatibility is the Vickrey-Clarke-Groves (VCG) tax ([5]) mechanism. However, it produces a surplus of taxes that cannot be redistributed to the agents and can severely reduce agents’ utilities. Game theory has shown that it is not possible to have a general scheme that is incentive-compatible, budget-balanced and guarantees a Pareto-efficient solution. We present a scheme that sacrifices Pareto-efficiency to achieve budget balance while being both incentive-compatible and individually rational. On randomly generated social choice problems, the scheme results in significantly better overall agent utility than the VCG tax mechanism.
Laurent Villard, Stephan Brunner, Alberto Bottino, Ben McMillan, Moahan Murugappan