Unit

Microsystems Laboratory 4

Laboratory
Summary

The Laboratory of Microsystems 4 (LMIS4), led by Prof. Philippe Renaud, specializes in research on BioMEMS, microfluidics, nanofluidics, and bioelectronic implants. Their work focuses on understanding molecular transport in nanochannels and developing microsystems for biological cell handling, analysis, and culture. Additionally, they are involved in the development of bioelectronic implants such as micro-electrodes for neural recordings and stimulation, biomechanical sensors for eye pressure, and articular implants. The laboratory has also contributed to the creation of several start-up companies.

Official source
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1,000)

Search for the lepton flavour violating decays B0 -> emu and B0s -> emu with LHCb Run 2 data

Sebastian Schulte

A large variety of new physics models suggest that the rates for lepton flavour violating bb-hadron decays may be much higher than predicted in the Standard Model, which leads to a high interest in the search for such decays. This thesis presents the sear ...
EPFL2024

Deciphering the nature of cell state transitions in single cells using quantitative modeling of temporal dynamics

Alex Russell Lederer

Cells are the smallest operational units of living systems. Through synthesis of various biomolecules and exchange of signals with the environment, cells tightly regulate their composition to realize a specific functional state. The transformation of a cel ...
EPFL2024

Modeling, fabrication and validation of 3D neural interfaces for peripheral nerves and brain organoids

Outman Akouissi

This thesis presents an extensive exploration of neuroelectronic interfaces, focusing on microfabrication, in silico modeling, and their applications in designing and fabricating devices for neural interfacing. The research encompasses both peripheral nerv ...
EPFL2024
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.