In computer science, the Cocke–Younger–Kasami algorithm (alternatively called CYK, or CKY) is a parsing algorithm for context-free grammars published by Itiroo Sakai in 1961. The algorithm is named after some of its rediscoverers: John Cocke, Daniel Younger, Tadao Kasami, and Jacob T. Schwartz. It employs bottom-up parsing and dynamic programming. The standard version of CYK operates only on context-free grammars given in Chomsky normal form (CNF). However any context-free grammar may be algorithmically transformed into a CNF grammar expressing the same language . The importance of the CYK algorithm stems from its high efficiency in certain situations. Using big O notation, the worst case running time of CYK is , where is the length of the parsed string and is the size of the CNF grammar . This makes it one of the most efficient parsing algorithms in terms of worst-case asymptotic complexity, although other algorithms exist with better average running time in many practical scenarios. The dynamic programming algorithm requires the context-free grammar to be rendered into Chomsky normal form (CNF), because it tests for possibilities to split the current sequence into two smaller sequences. Any context-free grammar that does not generate the empty string can be represented in CNF using only production rules of the forms , , and where is the start symbol. The algorithm in pseudocode is as follows: let the input be a string I consisting of n characters: a1 ... an. let the grammar contain r nonterminal symbols R1 ... Rr, with start symbol R1. let P[n,n,r] be an array of booleans. Initialize all elements of P to false. let back[n,n,r] be an array of lists of backpointing triples. Initialize all elements of back to the empty list. for each s = 1 to n for each unit production Rv → as set P[1,s,v] = true for each l = 2 to n -- Length of span for each s = 1 to n-l+1 -- Start of span for each p = 1 to l-1 -- Partition of span for each production Ra → Rb Rc if P[p,s,b] and P[l-p,s+p,c] then set P[l,s,a] = true, append to back[l,s,a] if P[n,1,1] is true then I is member of language return back -- by retracing the steps through back, one can easily construct all possible parse trees of the string.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (32)

Adaptive projected variational quantum dynamics

Giuseppe Carleo, David Linteau, Stefano Barison

We propose an adaptive quantum algorithm to prepare accurate variational time evolved wave functions. The method is based on the projected variational quantum dynamics (pVQD) algorithm, that performs a global optimization with linear scaling in the number ...
Amer Physical Soc2024

Efficient Parsing with Derivatives and Zippers

Romain Edelmann

Parsing is the process that enables a computer system to make sense of raw data. Parsing is common to almost all computer systems: It is involved every time sequential data is read and elaborated into structured data. The theory of parsing usually focuses ...
EPFL2021
Show more
Related concepts (9)
Parsing
Parsing, syntax analysis, or syntactic analysis is the process of analyzing a string of symbols, either in natural language, computer languages or data structures, conforming to the rules of a formal grammar. The term parsing comes from Latin pars (orationis), meaning part (of speech). The term has slightly different meanings in different branches of linguistics and computer science. Traditional sentence parsing is often performed as a method of understanding the exact meaning of a sentence or word, sometimes with the aid of devices such as sentence diagrams.
Earley parser
In computer science, the Earley parser is an algorithm for parsing strings that belong to a given context-free language, though (depending on the variant) it may suffer problems with certain nullable grammars. The algorithm, named after its inventor, Jay Earley, is a chart parser that uses dynamic programming; it is mainly used for parsing in computational linguistics. It was first introduced in his dissertation in 1968 (and later appeared in an abbreviated, more legible, form in a journal).
Formal grammar
In formal language theory, a grammar (when the context is not given, often called a formal grammar for clarity) describes how to form strings from a language's alphabet that are valid according to the language's syntax. A grammar does not describe the meaning of the strings or what can be done with them in whatever context—only their form. A formal grammar is defined as a set of production rules for such strings in a formal language. Formal language theory, the discipline that studies formal grammars and languages, is a branch of applied mathematics.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.