Category

Computational physics

Computational physics is the study and implementation of numerical analysis to solve problems in physics. Historically, computational physics was the first application of modern computers in science, and is now a subset of computational science. It is sometimes regarded as a subdiscipline (or offshoot) of theoretical physics, but others consider it an intermediate branch between theoretical and experimental physics - an area of study which supplements both theory and experiment. In physics, different theories based on mathematical models provide very precise predictions on how systems behave. Unfortunately, it is often the case that solving the mathematical model for a particular system in order to produce a useful prediction is not feasible. This can occur, for instance, when the solution does not have a closed-form expression, or is too complicated. In such cases, numerical approximations are required. Computational physics is the subject that deals with these numerical approximations: the approximation of the solution is written as a finite (and typically large) number of simple mathematical operations (algorithm), and a computer is used to perform these operations and compute an approximated solution and respective error. There is a debate about the status of computation within the scientific method. Sometimes it is regarded as more akin to theoretical physics; some others regard computer simulation as "computer experiments", yet still others consider it an intermediate or different branch between theoretical and experimental physics, a third way that supplements theory and experiment. While computers can be used in experiments for the measurement and recording (and storage) of data, this clearly does not constitute a computational approach. Computational physics problems are in general very difficult to solve exactly. This is due to several (mathematical) reasons: lack of algebraic and/or analytic solvability, complexity, and chaos.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related categories (18)
Computational electromagnetics
Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment. It typically involves using computer programs to compute approximate solutions to Maxwell's equations to calculate antenna performance, electromagnetic compatibility, radar cross section and electromagnetic wave propagation when not in free space.
Meteorology
Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did not begin until the 18th century. The 19th century saw modest progress in the field after weather observation networks were formed across broad regions. Prior attempts at prediction of weather depended on historical data.
Atmospheric optics
Atmospheric optics is "the study of the optical characteristics of the atmosphere or products of atmospheric processes .... [including] temporal and spatial resolutions beyond those discernible with the naked eye". Meteorological optics is "that part of atmospheric optics concerned with the study of patterns observable with the naked eye". Nevertheless, the two terms are sometimes used interchangeably. Meteorological optical phenomena, as described in this article, are concerned with how the optical properties of Earth's atmosphere cause a wide range of optical phenomena and visual perception phenomena.
Show more
Related concepts (11)
Atmospheric radiative transfer codes
An atmospheric radiative transfer model, code, or simulator calculates radiative transfer of electromagnetic radiation through a planetary atmosphere. At the core of a radiative transfer model lies the radiative transfer equation that is numerically solved using a solver such as a discrete ordinate method or a Monte Carlo method. The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.
Light scattering by particles
Light scattering by particles is the process by which small particles (e.g. ice crystals, dust, atmospheric particulates, cosmic dust, and blood cells) scatter light causing optical phenomena such as the blue color of the sky, and halos. Maxwell's equations are the basis of theoretical and computational methods describing light scattering, but since exact solutions to Maxwell's equations are only known for selected particle geometries (such as spherical), light scattering by particles is a branch of computational electromagnetics dealing with electromagnetic radiation scattering and absorption by particles.
Boundary element method
The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations (i.e. in boundary integral form), including fluid mechanics, acoustics, electromagnetics (where the technique is known as method of moments or abbreviated as MoM), fracture mechanics, and contact mechanics. The integral equation may be regarded as an exact solution of the governing partial differential equation.
Show more
Related courses (4)
ME-465: Advanced heat transfer
The course will deepen the fundamentals of heat transfer. Particular focus will be put on radiative and convective heat transfer, and computational approaches to solve complex, coupled heat transfer p
MICRO-420: Selected topics in advanced optics
This course proposes a selection of different facets of modern optics and photonics.
EE-603: Transient and dynamic analysis of electric power systems
The learning outcome is to increase the knowledge of simulation methods and the role of computers in the management and the operation of electric power systems.
Show more
Related lectures (24)
Radiative Heat Transfer: Particulate Media
Explores radiative heat transfer in participating media, covering boundary conditions, absorption, and scattering by spherical particles.
Radiative Heat Transfer
Covers radiative heat transfer, boundary conditions, heat flux, and particle clouds in participating media.
Radiative Properties of Small Spheres
Explores the radiative properties of small spheres, including Rayleigh scattering and absorption efficiencies, with a focus on Mie theory and particle characteristics.
Show more
Related publications (246)

The time-domain Cartesian multipole expansion of electromagnetic fields

Marcos Rubinstein, Farhad Rachidi-Haeri, Elias Per Joachim Le Boudec, Chaouki Kasmi, Nicolas Mora Parra, Emanuela Radici

Time-domain solutions of Maxwell’s equations in homogeneous and isotropic media are paramount to studying transient or broadband phenomena. However, analytical solutions are generally unavailable for practical applications, while numerical solutions are co ...
2024

Surface passivation and functionalisation for mass photometry

Suliana Manley, Jenny Sülzle, Laila Abdelaziz Abdelmoniem Elfeky

Interferometric scattering (iSCAT) microscopy enables the label-free observation of biomolecules. Consequently, single-particle imaging and tracking with the iSCAT-based method known as mass photometry (MP) is a growing area of study. However, establishing ...
Wiley2024

Frequency and time domains interactions in nanophotonics

Andrei Kiselev

In this thesis, we discuss the problems of scattering and optical manipulation related to nanosystems of different complexities. The multipolar decomposition method is used to represent scattering processes in nanosystems as a series of elementary excitati ...
EPFL2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.