Computational physics is the study and implementation of numerical analysis to solve problems in physics. Historically, computational physics was the first application of modern computers in science, and is now a subset of computational science. It is sometimes regarded as a subdiscipline (or offshoot) of theoretical physics, but others consider it an intermediate branch between theoretical and experimental physics - an area of study which supplements both theory and experiment.
In physics, different theories based on mathematical models provide very precise predictions on how systems behave. Unfortunately, it is often the case that solving the mathematical model for a particular system in order to produce a useful prediction is not feasible. This can occur, for instance, when the solution does not have a closed-form expression, or is too complicated. In such cases, numerical approximations are required. Computational physics is the subject that deals with these numerical approximations: the approximation of the solution is written as a finite (and typically large) number of simple mathematical operations (algorithm), and a computer is used to perform these operations and compute an approximated solution and respective error.
There is a debate about the status of computation within the scientific method. Sometimes it is regarded as more akin to theoretical physics; some others regard computer simulation as "computer experiments", yet still others consider it an intermediate or different branch between theoretical and experimental physics, a third way that supplements theory and experiment. While computers can be used in experiments for the measurement and recording (and storage) of data, this clearly does not constitute a computational approach.
Computational physics problems are in general very difficult to solve exactly. This is due to several (mathematical) reasons: lack of algebraic and/or analytic solvability, complexity, and chaos.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this advanced electromagnetics course, you will develop a solid theoretical understanding of wave-matter interactions in natural materials and artificially structured photonic media and devices.
This advanced theoretical course introduces students to basic concepts in wave scattering theory, with a focus on scattering matrix theory and its applications, in particular in photonics.
L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique
An atmospheric radiative transfer model, code, or simulator calculates radiative transfer of electromagnetic radiation through a planetary atmosphere. At the core of a radiative transfer model lies the radiative transfer equation that is numerically solved using a solver such as a discrete ordinate method or a Monte Carlo method. The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.
Light scattering by particles is the process by which small particles (e.g. ice crystals, dust, atmospheric particulates, cosmic dust, and blood cells) scatter light causing optical phenomena such as the blue color of the sky, and halos. Maxwell's equations are the basis of theoretical and computational methods describing light scattering, but since exact solutions to Maxwell's equations are only known for selected particle geometries (such as spherical), light scattering by particles is a branch of computational electromagnetics dealing with electromagnetic radiation scattering and absorption by particles.
The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations (i.e. in boundary integral form), including fluid mechanics, acoustics, electromagnetics (where the technique is known as method of moments or abbreviated as MoM), fracture mechanics, and contact mechanics. The integral equation may be regarded as an exact solution of the governing partial differential equation.
Explores the radiative properties of small spheres, including Rayleigh scattering and absorption efficiencies, with a focus on Mie theory and particle characteristics.
Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment. It typically involves using computer programs to compute approximate solutions to Maxwell's equations to calculate antenna performance, electromagnetic compatibility, radar cross section and electromagnetic wave propagation when not in free space.
Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did not begin until the 18th century. The 19th century saw modest progress in the field after weather observation networks were formed across broad regions. Prior attempts at prediction of weather depended on historical data.
Atmospheric optics is "the study of the optical characteristics of the atmosphere or products of atmospheric processes .... [including] temporal and spatial resolutions beyond those discernible with the naked eye". Meteorological optics is "that part of atmospheric optics concerned with the study of patterns observable with the naked eye". Nevertheless, the two terms are sometimes used interchangeably. Meteorological optical phenomena, as described in this article, are concerned with how the optical properties of Earth's atmosphere cause a wide range of optical phenomena and visual perception phenomena.
Time-domain solutions of Maxwell’s equations in homogeneous and isotropic media are paramount to studying transient or broadband phenomena. However, analytical solutions are generally unavailable for practical applications, while numerical solutions are co ...
2024
, ,
Interferometric scattering (iSCAT) microscopy enables the label-free observation of biomolecules. Consequently, single-particle imaging and tracking with the iSCAT-based method known as mass photometry (MP) is a growing area of study. However, establishing ...
Wiley2024
In this thesis, we discuss the problems of scattering and optical manipulation related to nanosystems of different complexities. The multipolar decomposition method is used to represent scattering processes in nanosystems as a series of elementary excitati ...