The Mars 2 was an uncrewed space probe of the Mars program, a series of uncrewed Mars landers and orbiters launched by the Soviet Union beginning 19 May 1971. The Mars 2 and Mars 3 missions consisted of identical spacecraft, each with an orbiter and an attached lander. The orbiter is identical to the Venera 9 bus. The type of bus/orbiter is the 4MV. They were launched by a Proton-K heavy launch vehicle with a Blok D upper stage. The lander of Mars 2 became the first human-made object to reach the surface of Mars, although the landing system failed and the lander was lost.
Launch Date/Time:
Mars 2: 19 May 1971 at 16:22:44 UTC
Launch mass (including fuel):
Combined:
Orbiter:
Lander:
On-orbit dry mass:
Dimensions: tall, across ( across with solar panels deployed)
On 19 May 1971, the Proton-K heavy launch vehicle launched the probe from Baikonur Cosmodrome. After the first stage separated the second stage was ignited. The third stage engine blasted Mars 2 into parking orbit, then the Blok D upper stage sent Mars 2 on the trans-Mars trajectory.
The Orbiter type was the 4MV, used also for Mars-3 and later Mars and Venera Probes. The orbiter engine performed a burn to put the spacecraft into a , 18-hour orbit about Mars with an inclination of 48.9 degrees. Scientific instruments were generally turned on for about 30 minutes near periapsis.
The orbiter's primary scientific objectives were to image the Martian surface and clouds, determine the temperature on Mars, study the topography, composition and physical properties of the surface, measure properties of the atmosphere, monitor the solar wind and the interplanetary and Martian magnetic fields, and act as a communications relay to send signals from the landers to the Earth.
By coincidence, a particularly large dust storm on Mars adversely affected the mission. When Mariner 9 arrived and successfully orbited Mars on 14 November 1971, just two weeks prior to Mars 2 and Mars 3, planetary scientists were surprised to find the atmosphere was thick with "a planet-wide robe of dust, the largest storm ever observed.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Mars 3 was a robotic space probe of the Soviet Mars program, launched May 28, 1971, nine days after its twin spacecraft Mars 2. The probes were identical robotic spacecraft launched by Proton-K rockets with a Blok D upper stage, each consisting of an orbiter and an attached lander. After the Mars 2 lander crashed on the Martian surface, the Mars 3 lander became the first spacecraft to attain a soft landing on Mars, on December 2, 1971. It failed 110 seconds after landing, having transmitted only a gray image with no details.
Mars is the fourth planet and the furthest terrestrial planet from the Sun. The reddish color of its surface is due to finely grained iron(III) oxide dust in the soil, giving it the nickname "the Red Planet". Mars's radius is second smallest among the planets in the Solar System at . The Martian dichotomy is visible on the surface: on average, the terrain on Mars's northern hemisphere is flatter and lower than its southern hemisphere. Mars has a thin atmosphere made primarily of carbon dioxide and two irregularly shaped natural satellites: Phobos and Deimos.
A lander is a spacecraft that descends towards, then comes to rest on, the surface of an astronomical body other than Earth. In contrast to an impact probe, which makes a hard landing that damages or destroys the probe upon reaching the surface, a lander makes a soft landing after which the probe remains functional. For bodies with atmospheres, the landing occurs after atmospheric entry. In these cases, landers may employ parachutes to slow them down enough to maintain a low terminal velocity.
From the recent awareness of the booming number of space debris and their derived worldwide re-entry event threat originating from the use of high survivability components, complementary mitigation measures must be taken for future orbital elements. In thi ...
2023
, ,
Dynamic penetrometers reveal information about seafloor strength, stratification, stability, and sediment remobilization. However, positioning is often limited to a range of meters making it difficult to target small-scale geomorphologic features. Deployme ...
Association for the Sciences of Limnology and Oceanography2013