In thermochemistry, an endothermic process () is any thermodynamic process with an increase in the enthalpy H (or internal energy U) of the system. In such a process, a closed system usually absorbs thermal energy from its surroundings, which is heat transfer into the system. Thus, an endothermic reaction generally leads to an increase in the temperature of the system and a decrease in that of the surroundings. It may be a chemical process, such as dissolving ammonium nitrate () in water (), or a physical process, such as the melting of ice cubes.
The term was coined by 19th-century French chemist Marcellin Berthelot. The opposite of an endothermic process is an exothermic process, one that releases or "gives out" energy, usually in the form of heat and sometimes as electrical energy. Thus, in each term (endothermic and exothermic) the prefix refers to where heat (or electrical energy) goes as the process occurs.
Due to bonds breaking and forming during various processes (changes in state, chemical reactions), there is usually a change in energy. If the energy of the forming bonds is greater than the energy of the breaking bonds, then energy is released. This is known as an exothermic reaction. However, if more energy is needed to break the bonds than the energy being released, energy is taken up. Therefore, it is an endothermic reaction.
Whether a process can occur spontaneously depends not only on the enthalpy change but also on the entropy change (∆S) and absolute temperature T. If a process is a spontaneous process at a certain temperature, the products have a lower Gibbs free energy G = H – TS than the reactants (an exergonic process), even if the enthalpy of the products is higher. Thus, an endothermic process usually requires a favorable entropy increase (∆S > 0) in the system that overcomes the unfavorable increase in enthalpy so that still ∆G < 0. While endothermic phase transitions into more disordered states of higher entropy, e.g. melting and vaporization, are common, spontaneous chemical processes at moderate temperatures are rarely endothermic.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics. Historically, thermodynamic temperature was defined by Lord Kelvin in terms of a macroscopic relation between thermodynamic work and heat transfer as defined in thermodynamics, but the kelvin was redefined by international agreement in 2019 in terms of phenomena that are now understood as manifestations of the kinetic energy of free motion of microscopic particles such as atoms, molecules, and electrons.
Nuclear fusion is a reaction in which two or more atomic nuclei, usually deuterium and tritium (hydrogen variants), are combined to form one atomic nuclei and subatomic particles (neutrons or protons). The difference in mass between the reactants and products is manifested as either the release or absorption of energy. This difference in mass arises due to the difference in nuclear binding energy between the atomic nuclei before and after the reaction.
Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and nearly colorless chemical substance, and it is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a solvent). It is vital for all known forms of life, despite not providing food energy, or organic micronutrients. Its chemical formula, , indicates that each of its molecules contains one oxygen and two hydrogen atoms, connected by covalent bonds.
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
Sublimation influences the water storage in snow covers and glaciers, which is important for water use and projections of the sea level rise. Yet, it is challenging to quantify sublimation for large areas or in conditions of snow transport. In-situ measure ...
A major goal in the design of synthetic molecular machines is the creation of pumps that can use the input of energy to transport material from a reservoir at low chemical potential to a different reservoir at higher chemical potential, thereby forming and ...
ROYAL SOC CHEMISTRY2020
In this thesis, we exploited optical and X-ray pump-probe methods in a synergistic approach to study the interplay of the electronic, spin and structural degrees of freedom in two class of complex systems relevant for solar energy conversion applications: ...