In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, including possibly their inverse functions (e.g., arcsin, log, or x1/n). All elementary functions are continuous on their domains. Elementary functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841. An algebraic treatment of elementary functions was started by Joseph Fels Ritt in the 1930s. Elementary functions of a single variable x include: Constant functions: etc. Rational powers of x: etc. Exponential functions: Logarithms: Trigonometric functions: etc. Inverse trigonometric functions: etc. Hyperbolic functions: etc. Inverse hyperbolic functions: etc. All functions obtained by adding, subtracting, multiplying or dividing a finite number of any of the previous functions All functions obtained by root extraction of a polynomial with coefficients in elementary functions All functions obtained by composing a finite number of any of the previously listed functions Certain elementary functions of a single complex variable z, such as and , may be multivalued. Additionally, certain classes of functions may be obtained by others using the final two rules. For example, the exponential function composed with addition, subtraction, and division provides the hyperbolic functions, while initial composition with instead provides the trigonometric functions. Examples of elementary functions include: Addition, e.g. (x+1) Multiplication, e.g. (2x) Polynomial functions The last function is equal to , the inverse cosine, in the entire complex plane. All monomials, polynomials, rational functions and algebraic functions are elementary. The absolute value function, for real , is also elementary as it can be expressed as the composition of a power and root of : .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (25)
Integral
In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, the other being differentiation. Integration started as a method to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Today integration is used in a wide variety of scientific fields.
Function (mathematics)
In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity).
Special functions
Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. The term is defined by consensus, and thus lacks a general formal definition, but the list of mathematical functions contains functions that are commonly accepted as special. Many special functions appear as solutions of differential equations or integrals of elementary functions.
Show more
Related MOOCs (11)
Trigonometric Functions, Logarithms and Exponentials
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Trigonometric Functions, Logarithms and Exponentials
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.