**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Integral

Summary

In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, the other being differentiation. Integration started as a method to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Today integration is used in a wide variety of scientific fields.
The integrals enumerated here are called definite integrals, which can be interpreted as the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line. Conventionally, areas above the horizontal axis of the plane are positive while areas below are negative. Integrals also refer to the concept of an antiderivative, a function whose derivative is the given function; in this case, they are also called indefinite integrals. The fundamental theorem of calculus relates definite integrals with differentiation and provides a method to compute the definite integral of a function when its antiderivative is known; differentiation and integration are inverse operations.
Although methods of calculating areas and volumes dated from ancient Greek mathematics, the principles of integration were formulated independently by Isaac Newton and Gottfried Wilhelm Leibniz in the late 17th century, who thought of the area under a curve as an infinite sum of rectangles of infinitesimal width. Bernhard Riemann later gave a rigorous definition of integrals, which is based on a limiting procedure that approximates the area of a curvilinear region by breaking the region into infinitesimally thin vertical slabs. In the early 20th century, Henri Lebesgue generalized Riemann's formulation by introducing what is now referred to as the Lebesgue integral; it is more robust than Riemann's in the sense that a wider class of functions are Lebesgue-integrable.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (32)

Related people (14)

Related courses (225)

Related MOOCs (25)

Related concepts (330)

Related units (8)

Related lectures (1,000)

FIN-607: Empirical Asset Pricing

This class is designed to give you an understanding of the basics of empirical asset pricing. This means that we will learn how to test asset pricing models and apply them mostly to stock markets. We

MSE-205: Materials mechanics

La mécanique des solides déformables est abordée pour déterminer les contraintes et déformations dans divers matériaux isotropes sollicités en traction, compression, cisaillement, torsion et flexion.

MATH-201: Analysis III

Calcul différentiel et intégral.
Eléments d'analyse complexe.

Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

Concepts de base de l'analyse réelle et introduction aux nombres réels.

Mathematics

Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them.

Elementary function

In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, including possibly their inverse functions (e.g., arcsin, log, or x1/n). All elementary functions are continuous on their domains. Elementary functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841.

Antiderivative

In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function f is a differentiable function F whose derivative is equal to the original function f. This can be stated symbolically as F' = f. The process of solving for antiderivatives is called antidifferentiation (or indefinite integration), and its opposite operation is called differentiation, which is the process of finding a derivative. Antiderivatives are often denoted by capital Roman letters such as F and G.

Functions xr, r>0, on 10,1MOOC: Analyse I

Covers the properties of functions xr, r>0, on 10,1, including limits and integrals.

Eigenstate Thermalization Hypothesis

Explores the Eigenstate Thermalization Hypothesis in quantum systems, emphasizing the random matrix theory and the behavior of observables in thermal equilibrium.

Linear Algebra: Matrix OperationsMATH-212: Analyse numérique et optimisation

Covers matrix operations and properties, including eigenvalues and eigenvectors.

Pablo Antolin Sanchez, Thibaut Hirschler

This paper presents a novel method for solving partial differential equations on three-dimensional CAD geometries by means of immersed isogeometric discretizations that do not require quadrature schemes. It relies on a newly developed technique for the evaluation of polynomial integrals over spline boundary representations that is exclusively based on analytical computations. First, through a consistent polynomial approximation step, the finite element operators of the Galerkin method are transformed into integrals involving only polynomial integrands. Then, by successive applications of the divergence theorem, those integrals over B-Reps are transformed into the first surface and then line integrals with polynomials integrands. Eventually, these line integrals are evaluated analytically with machine precision accuracy. The performance of the proposed method is demonstrated by means of numerical experiments in the context of 2D and 3D elliptic problems, retrieving optimal error convergence order in all cases. Finally, the methodology is illustrated for 3D CAD models with an industrial level of complexity.

Understanding looping probabilities, including the particular case of ring closure or cyclization, of fluctuating polymers (e.g., DNA) is important in many applications in molecular biology and chemistry. In a continuum limit the configuration of a polymer is a curve in the group SE(3) of rigid body displacements, whose energy can be modeled via the Cosserat theory of elastic rods. Cosserat rods are a more detailed version of the classic wormlike-chain (WLC) model, which we show to be more appropriate in short-length scale, or stiff, regimes, where the contributions of extension and shear deformations are not negligible and lead to noteworthy high values for the cyclization probabilities (or J-factors). We therefore observe that the Cosserat framework is a candidate for gaining a better understanding of the enhanced cyclization of short DNA molecules reported in various experiments, which is not satisfactorily explained by WLC-type models. Characterizing the stochastic fluctuations about minimizers of the energy by means of Laplace expansions in a (real) path integral formulation, we develop efficient analytical approximations for the two cases of full looping, in which both end-to-end relative translation and rotation are prescribed, and of marginal looping probabilities, where only end-to-end translation is prescribed. For isotropic Cosserat rods, certain looping boundary value problems admit nonisolated families of critical points of the energy due to an associated continuous symmetry. For the first time, taking inspiration from (imaginary) path integral techniques, a quantum mechanical probabilistic treatment of Goldstone modes in statistical rod mechanics sheds light on J-factor computations for isotropic rods in the semiclassical context. All the results are achieved exploiting appropriate Jacobi fields arising from Gaussian path integrals and show good agreement when compared with intense Monte Carlo simulations for the target examples.

In this paper we derive quantitative estimates in the context of stochastic homogenization for integral functionals defined on finite partitions, where the random surface integrand is assumed to be stationary. Requiring the integrand to satisfy in addition a multiscale functional inequality, we control quantitatively the fluctuations of the asymptotic cell formulas defining the homogenized surface integrand. As a byproduct we obtain a simplified cell formula where we replace cubes by almost flat hyperrectangles.

2022