Concept

Eight queens puzzle

Summary
The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions. The problem was first posed in the mid-19th century. In the modern era, it is often used as an example problem for various computer programming techniques. The eight queens puzzle is a special case of the more general n queens problem of placing n non-attacking queens on an n×n chessboard. Solutions exist for all natural numbers n with the exception of n = 2 and n = 3. Although the exact number of solutions is only known for n ≤ 27, the asymptotic growth rate of the number of solutions is approximately (0.143 n)n. Chess composer Max Bezzel published the eight queens puzzle in 1848. Franz Nauck published the first solutions in 1850. Nauck also extended the puzzle to the n queens problem, with n queens on a chessboard of n×n squares. Since then, many mathematicians, including Carl Friedrich Gauss, have worked on both the eight queens puzzle and its generalized n-queens version. In 1874, S. Gunther proposed a method using determinants to find solutions. J.W.L. Glaisher refined Gunther's approach. In 1972, Edsger Dijkstra used this problem to illustrate the power of what he called structured programming. He published a highly detailed description of a depth-first backtracking algorithm. The problem of finding all solutions to the 8-queens problem can be quite computationally expensive, as there are 4,426,165,368 possible arrangements of eight queens on an 8×8 board, but only 92 solutions. It is possible to use shortcuts that reduce computational requirements or rules of thumb that avoids brute-force computational techniques. For example, by applying a simple rule that chooses one queen from each column, it is possible to reduce the number of possibilities to 16,777,216 (that is, 88) possible combinations. Generating permutations further reduces the possibilities to just 40,320 (that is, 8!), which can then be checked for diagonal attacks.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.