Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables, which is solved by constraint satisfaction methods. CSPs are the subject of research in both artificial intelligence and operations research, since the regularity in their formulation provides a common basis to analyze and solve problems of many seemingly unrelated families. CSPs often exhibit high complexity, requiring a combination of heuristics and combinatorial search methods to be solved in a reasonable time. Constraint programming (CP) is the field of research that specifically focuses on tackling these kinds of problems. Additionally, Boolean satisfiability problem (SAT), the satisfiability modulo theories (SMT), mixed integer programming (MIP) and answer set programming (ASP) are all fields of research focusing on the resolution of particular forms of the constraint satisfaction problem.
Examples of problems that can be modeled as a constraint satisfaction problem include:
Type inference
Eight queens puzzle
Map coloring problem
Maximum cut problem
Sudoku, Crosswords, Futoshiki, Kakuro (Cross Sums), Numbrix, Hidato and many other logic puzzles
These are often provided with tutorials of CP, ASP, Boolean SAT and SMT solvers. In the general case, constraint problems can be much harder, and may not be expressible in some of these simpler systems. "Real life" examples include automated planning, lexical disambiguation, musicology, product configuration and resource allocation.
The existence of a solution to a CSP can be viewed as a decision problem. This can be decided by finding a solution, or failing to find a solution after exhaustive search (stochastic algorithms typically never reach an exhaustive conclusion, while directed searches often do, on sufficiently small problems). In some cases the CSP might be known to have solutions beforehand, through some other mathematical inference process.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
Les structures en treillis, en poutre, en dalles et en cadre sont essentielles pour une grande partie des constructions modernes : immeubles pour l'habitation ou de bureaux, halles et usines, ponts, o
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
L'étudiant apprendra à résoudre numériquement divers problèmes mathématiques. Les propriétés théoriques de ces
méthodes seront discutées.
The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions. The problem was first posed in the mid-19th century. In the modern era, it is often used as an example problem for various computer programming techniques. The eight queens puzzle is a special case of the more general n queens problem of placing n non-attacking queens on an n×n chessboard.
Constraint programming (CP) is a paradigm for solving combinatorial problems that draws on a wide range of techniques from artificial intelligence, computer science, and operations research. In constraint programming, users declaratively state the constraints on the feasible solutions for a set of decision variables. Constraints differ from the common primitives of imperative programming languages in that they do not specify a step or sequence of steps to execute, but rather the properties of a solution to be found.
Backtracking is a class of algorithms for finding solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution. The classic textbook example of the use of backtracking is the eight queens puzzle, that asks for all arrangements of eight chess queens on a standard chessboard so that no queen attacks any other.
Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...
EPFL2024
In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
This doctoral thesis navigates the complex landscape of motion coordination and formation control within teams of rotary-wing Micro Aerial Vehicles (MAVs). Prompted by the intricate demands of real-world applications such as search and rescue or surveillan ...