A split-phase or single-phase three-wire system is a type of single-phase electric power distribution. It is the alternating current (AC) equivalent of the original Edison Machine Works three-wire direct-current system. Its primary advantage is that, for a given capacity of a distribution system, it saves conductor material over a single-ended single-phase system, while only requiring a single phase on the supply side of the distribution transformer. This system is common in North America for residential and light commercial applications. Two 120 V AC lines are supplied to the premises that are out of phase by 180 degrees with each other (when both measured with respect to the neutral), along with a common neutral. The neutral conductor is connected to ground at the transformer center tap. Circuits for lighting and small appliance power outlets (i.e., NEMA 1 and NEMA 5) use 120 V circuits—these are connected between one of the lines and neutral using a single-pole circuit breaker. High-demand applications, such as ovens, are often powered using 240 V AC circuits—these are connected between the two 120 V AC lines. These 240 V loads are either hard-wired or use NEMA 10 or NEMA 14 outlets which are deliberately incompatible with the 120 V outlets. Other applications of a split-phase power system are used to reduce the electric shock hazard or to reduce electromagnetic noise. A transformer supplying a three-wire distribution system has a single-phase input (primary) winding. The output (secondary) winding is center-tapped and the center tap connected to a grounded neutral. As shown in Fig. 1, either end to center has half the voltage of end-to-end. Fig. 2 illustrates the phasor diagram of the output voltages for a split-phase transformer. Since the two phasors do not define a unique direction of rotation for a revolving magnetic field, a split single-phase is not a two-phase system. In the United States and Canada, the practice originated with the DC distribution system developed by Thomas Edison.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
EE-111: Circuits and systems
Ce cours présente une introduction à la théorie et aux méthodes d'analyse et de résolution des circuits électriques.
EE-370: Electric power systems
Ce cours décrit les composants d'un réseau électrique. Il explique le fonctionnement des réseaux électriques et leurs limites d'utilisation. Il introduit les outils de base permettant de les piloter.
MICRO-101: Electrotechnics II
En régime alternatif, les différents types de puissance sont introduites. Les systèmes alternatifs triphasés et leurs charges sont traités. Finalement, le cours traite des régimes transitoires, base d
Show more
Related lectures (31)
Electrostatic Induction in Conductors
Explores electrostatic induction in conductors, charge redistribution, and behavior of loaded conductors.
Three-Phase Sinusoidal Circuits
Covers the efficiency and weight/power ratio of three-phase alternators and symmetrical three-phase systems.
Rotating Field and Winding, Rotating Field SpeedMOOC: Conversion electromécanique II
Covers pole pairs, rotating field speed calculation, and direction of rotation.
Show more
Related publications (54)

Silicon photonic microelectromechanical phase shifters for scalable programmable photonics

Niels Quack, Hamed Sattari, Alain Yuji Takabayashi

Programmable photonic integrated circuits are emerging as an attractive platform for applications such as quantum information processing and artificial neural networks. However, current programmable circuits are limited in scalability by the lack of low-po ...
OPTICAL SOC AMER2021

High-Power DC–DC Converter Utilising Scott transformer Connection

Drazen Dujic, Stefan Milovanovic

To obtain a resilient and flexible DC grid, reliable means for interfacing its parts operating under different voltage levels must be ensured. This paper proposes bidirectional, isolated, DC–DC converter designed to connect either high/medium voltage bipol ...
2019

Automatically Starting and Secured Detent Escapement for a Timepiece

Simon Nessim Henein, Ilan Vardi

A horological detent escapement for a horological movement arranged to transmit a torque from said horological movement to an oscillating regulating organ of said horological movement, the regulating organ comprising a first mobile body and the escapement ...
2019
Show more
Related concepts (10)
Ground and neutral
In electrical engineering, ground and neutral are circuit conductors used in alternating current (AC) electrical systems. The ground circuit is connected to earth, and neutral circuit is usually connected to ground. As the neutral point of an electrical supply system is often connected to earth ground, ground and neutral are closely related. Under certain conditions, a conductor used to connect to a system neutral is also used for grounding (earthing) of equipment and structures.
Residual-current device
A residual-current device (RCD), residual-current circuit breaker (RCCB) or ground fault circuit interrupter (GFCI) is an electrical safety device that quickly breaks an electrical circuit with leakage current to ground. It is to protect equipment and to reduce the risk of serious harm from an ongoing electric shock. Injury may still occur in some cases, for example if a human receives a brief shock before the electrical circuit is isolated, falls after receiving a shock, or if the person touches both conductors at the same time.
Single-phase electric power
In electrical engineering, single-phase electric power (abbreviated 1φ) is the distribution of alternating current electric power using a system in which all the voltages of the supply vary in unison. Single-phase distribution is used when loads are mostly lighting and heating, with few large electric motors. A single-phase supply connected to an alternating current electric motor does not produce a rotating magnetic field; single-phase motors need additional circuits for starting (capacitor start motor), and such motors are uncommon above 10 kW in rating.
Show more
Related MOOCs (2)
Electrical Engineering II
Découvrez les systèmes alternatifs triphasés et leurs charges associées ainsi que les régimes transitoires, base des alimentations à découpage.
Electrical Engineering II
Découvrez les systèmes alternatifs triphasés et leurs charges associées ainsi que les régimes transitoires, base des alimentations à découpage.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.