Pre-preg is a composite material made from "pre-impregnated" fibers and a partially cured polymer matrix, such as epoxy or phenolic resin, or even thermoplastic mixed with liquid rubbers or resins. The fibers often take the form of a weave and the matrix is used to bond them together and to other components during manufacture. The thermoset matrix is only partially cured to allow easy handling; this B-Stage material requires cold storage to prevent complete curing. B-Stage pre-preg is always stored in cooled areas since heat accelerates complete polymerization. Hence, composite structures built of pre-pregs will mostly require an oven or autoclave to cure. The main idea behind a pre-preg material is the use of anisotropic mechanical properties along the fibers, while the polymer matrix provides filling properties, keeping the fibers in a single system.
Pre-preg allows one to impregnate the fibers on a flat workable surface, or rather in an industrial process, and then later form the impregnated fibers to a shape which could prove to be problematic for the hot injection process. Pre-preg also allows one to impregnate a bulk amount of fiber and then store it in a cooled area (below 20 °C) for an extended period of time to cure later. The process can also be time consuming in comparison to the hot injection process and the added value for pre-preg preparation is at the stage of the material supplier.
This technique can be utilized in the aviation industry. As in principle, prepreg has the potential to be processed batch sizes. Despite fiber glass having high applicability in aircraft specifically small aircraft motors, carbon fiber is employed in this type of industry at a higher rate, and the demand for it is increasing. For example, the characterization of Airbus A380 is handled by means of a mass fraction. This mass fraction is about 20%, and the Airbus A350XWB by a mass fraction of about 50% of carbon fiber prepregs. Carbon fiber prepregs have been used in the airfoils of the Airbus fleet for more than 20 years.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The latest developments in processing and the novel generations of organic composites are discussed. Nanocomposites, adaptive composites and biocomposites are presented. Product development, cost anal
The course aims at providing a comprehensive overview of ongoing advanced manufacturing research topics and an opportunity for students to investigate current research trends in one particular topic o
Les propriétés mécaniques et physiques des composites anisotropes ainsi que leurs outils de calcul sont présentés. Les constituants, les mises en oeuvre et les relations microstructure-procédé-proprié
Carbon fiber-reinforced polymers (American English), carbon-fiber-reinforced polymers (Commonwealth English), carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic (CFRP, CRP, CFRTP), also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.
Fibre-reinforced plastic (FRP; also called fibre-reinforced polymer, or in American English fiber) is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass (in fibreglass), carbon (in carbon-fibre-reinforced polymer), aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.
A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle. They were first used after World War II, and continuing research has led to an increased range of thermoset resins, polymers or plastics, as well as engineering grade thermoplastics.
Thermoplastic compression resin transfer moulding coupled with injection moulding is an appealing process for the production of thermoplastic composites. However, its implementation at an industrial scale remains challenging as variotherm injection mouldin ...
Thin-ply composites, obtained with recently developed fiber spreading techniques, rapidly gained industrial interest because they offer a large composite design freedom, and lead to a composite tensile strength that is close to that of the individual fiber ...
EPFL2023
Liquid composite moulding methods are widely applied for manufacturing of fibre reinforced polymer (FRP) composites and consist of two main stages: impregnation of fibrous reinforcements by a liquid monomer resin and curing of this resin. This thesis work ...