Jupiter mass, also called Jovian mass, is the unit of mass equal to the total mass of the planet Jupiter. This value may refer to the mass of the planet alone, or the mass of the entire Jovian system to include the moons of Jupiter. Jupiter is by far the most massive planet in the Solar System. It is approximately 2.5 times as massive as all of the other planets in the Solar System combined.
Jupiter mass is a common unit of mass in astronomy that is used to indicate the masses of other similarly-sized objects, including the outer planets, extrasolar planets, and brown dwarfs, as this unit provides a convenient scale for comparison.
The current best known value for the mass of Jupiter can be expressed as 1898130yottagrams:
which is about as massive as the sun (is about ):
Jupiter is 318 times as massive as Earth:
Jupiter's mass is 2.5 times that of all the other planets in the Solar System combined—this is so massive that its barycenter with the Sun lies beyond the Sun's surface at 1.068 solar radii from the Sun's center.
Because the mass of Jupiter is so large compared to the other objects in the solar system, the effects of its gravity must be included when calculating satellite trajectories and the precise orbits of other bodies in the solar system, including Earth's moon and even Pluto.
Theoretical models indicate that if Jupiter had much more mass than it does at present, its atmosphere would collapse, and the planet would shrink. For small changes in mass, the radius would not change appreciably, but above about (1.6 Jupiter masses) the interior would become so much more compressed under the increased pressure that its volume would decrease despite the increasing amount of matter. As a result, Jupiter is thought to have about as large a diameter as a planet of its composition and evolutionary history can achieve. The process of further shrinkage with increasing mass would continue until appreciable stellar ignition was achieved, as in high-mass brown dwarfs having around 50 Jupiter masses.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores design discussions and documentation in software development, emphasizing scientific programming and code documentation tools like Doxygen and Sphinx.
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
Neptune is the eighth planet from the Sun and the farthest IAU-recognized planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth, and slightly more massive than its near-twin Uranus. Neptune is denser and physically smaller than Uranus because its greater mass causes more gravitational compression of its atmosphere. Being composed primarily of gases and liquids, it has no well-defined solid surface.
A sub-brown dwarf or planetary-mass brown dwarf is an astronomical object that formed in the same manner as stars and brown dwarfs (i.e. through the collapse of a gas cloud) but that has a planetary mass, therefore by definition below the limiting mass for thermonuclear fusion of deuterium (about ). Some researchers call them rogue planets whereas others call them planetary-mass brown dwarfs. They are sometimes categorized as Y spectral class brown dwarfs.
The astronomical system of units, formerly called the IAU (1976) System of Astronomical Constants, is a system of measurement developed for use in astronomy. It was adopted by the International Astronomical Union (IAU) in 1976 via Resolution No. 1, and has been significantly updated in 1994 and 2009 (see astronomical constant). The system was developed because of the difficulties in measuring and expressing astronomical data in International System of Units (SI units).
We present an end-to-end description of the formation of globular clusters (GCs) combining a treatment for their formation and dynamical evolution within galaxy haloes with a state-of-the-art semi-analytic simulation of galaxy formation. Our approach allow ...
2024
, , , ,
We present a new method to simultaneously and self-consistently model the mass distribution of galaxy clusters that combines constraints from strong lensing features, X-ray emission, and galaxy kinematics measurements. We are able to successfully decompose ...
Oxford2023
, ,
Brillouin scattering in gas shows unmatched gain properties in hollow-core optical fibers filled at high pressure. Here, the gain characteristics are studied for two common gases, namely, N2 and CO2, which show distinct features and are compared to expecte ...