Water efficiency is the practice of reducing water consumption by measuring the amount of water required for a particular purpose and is proportionate to the amount of essential water used. Water efficiency differs from water conservation in that it focuses on reducing waste, not restricting use. Solutions for water efficiency not only focus on reducing the amount of potable water used but also on reducing the use of non-potable water where appropriate (e.g. flushing toilet, watering landscape, etc.). It also emphasizes the influence consumers can have on water efficiency by making small behavioral changes to reduce water wastage, and by choosing more water-efficient products.
According to the UN World Water Development Report, over the past 100 years, global water use has increased by a factor of six. Annually, the rate steadily increases at an estimated amount of one percent as a result of population increase, economic development and changing consumption patterns. Increasing human demand for water coupled with the effects of climate change mean that the future of water supply is not secure. Billion people do not have safe drinking water. In addition, there are changes in climate, population growth, and lifestyles. The changes in human lifestyle and activities require more water per capita. This creates competition for water among agricultural, industrial, and human consumption.
Many countries recognize water scarcity as a growing problem. Global organizations such as the World Water Council, continue to prioritize water efficiency alongside water conservation.
The Alliance for Water Efficiency, Waterwise, California Water Efficiency Partnership (formally the California Urban Water Conservation Council), Smart Approved WaterMark in Australia, and the Partnership for Water Sustainability in British Columbia in Canada are non-governmental organizations that support water efficiency at national and regional levels.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Water scarcity (closely related to water stress or water crisis) is the lack of fresh water resources to meet the standard water demand. There are two types of water scarcity namely physical and economic water scarcity. Physical water scarcity is where there is not enough water to meet all demands, including that needed for ecosystems to function. Arid areas for example Central and West Asia, and North Africa often experience physical water scarcity.
Water conservation includes all the policies, strategies and activities to sustainably manage the natural resource of fresh water, to protect the hydrosphere, and to meet the current and future human demand (thus avoiding water scarcity). Population, household size and growth and affluence all affect how much water is used. Factors such as climate change have increased pressures on natural water resources especially in manufacturing and agricultural irrigation.
Greywater (or grey water, sullage, also spelled gray water in the United States) refers to domestic wastewater generated in households or office buildings from streams without fecal contamination, i.e., all streams except for the wastewater from toilets. Sources of greywater include sinks, showers, baths, washing machines or dishwashers. As greywater contains fewer pathogens than blackwater, it is generally safer to handle and easier to treat and reuse onsite for toilet flushing, landscape or crop irrigation, and other non-potable uses.
Introduction to heterogeneous integration for Nano-Bio-CMOS sensors on Chip.
Understanding and designing of active Bio/CMOS interfaces powered by nanostructures.
Explores slope stability analysis using the limit equilibrium method and the Kerisel Chart for determining critical slip surfaces and factors of safety.
Agricultural production in arid and semi-arid regions is particularly vulnerable to climate change, which, combined with projected food requirements, makes the sustainable management of water resources critical to ensure national and global food security. ...
2022
,
The presence of waterborne enteric viruses in lake recreational water sites is not desired, as they may have a negative impact on human health. However, their concentrations, fate and transport in lakes remain poor understood. To date, the health risks pos ...
Waterborne enteric viruses in lakes, especially at recreational water sites, may have a negative impact on human health. However, their fate and transport in lakes are poorly understood. In this study, we propose a coupled water quality and quantitative mi ...