In 1976 two identical Viking program landers each carried four types of biological experiments to the surface of Mars. The first successful Mars landers, Viking 1 and Viking 2, then carried out experiments to look for biosignatures of microbial life on Mars. The landers each used a robotic arm to pick up and place soil samples into sealed test containers on the craft.
The two landers carried out the same tests at two places on Mars' surface, Viking 1 near the equator and Viking 2 further north.
The four experiments below are presented in the order in which they were carried out by the two Viking landers. The biology team leader for the Viking program was Harold P. Klein (NASA Ames).
A gas chromatograph — mass spectrometer (GCMS) is a device that separates vapor components chemically via a gas chromatograph and then feeds the result into a mass spectrometer, which measures the molecular weight of each chemical. As a result, it can separate, identify, and quantify a large number of different chemicals. The GCMS (PI: Klaus Biemann, MIT) was used to analyze the components of untreated Martian soil, and particularly those components that are released as the soil is heated to different temperatures. It could measure molecules present at a level of a few parts per billion.
The GCMS measured no significant amount of organic molecules in the Martian soil. In fact, Martian soils were found to contain less carbon than lifeless lunar soils returned by the Apollo program. This result was difficult to explain if Martian bacterial metabolism was responsible for the positive results seen by the Labeled Release experiment (see below). A 2011 astrobiology textbook notes that this was the decisive factor due to which "For most of the Viking scientists, the final conclusion was that the Viking missions failed to detect life in the Martian soil."
Experiments conducted in 2008 by the Phoenix lander discovered the presence of perchlorate in Martian soil.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The atmosphere of Mars is the layer of gases surrounding Mars. It is primarily composed of carbon dioxide (95%), molecular nitrogen (2.8%), and argon (2%). It also contains trace levels of water vapor, oxygen, carbon monoxide, hydrogen, and noble gases. The atmosphere of Mars is much thinner than Earth's. The average surface pressure is only about which is less than 1% of the Earth's value. The currently thin Martian atmosphere prohibits the existence of liquid water on the surface of Mars, but many studies suggest that the Martian atmosphere was much thicker in the past.
Almost all water on Mars today exists as ice, though it also exists in small quantities as vapor in the atmosphere. What was thought to be low-volume liquid brines in shallow Martian soil, also called recurrent slope lineae, may be grains of flowing sand and dust slipping downhill to make dark streaks. While most water ice is buried, it is exposed at the surface across several locations on Mars. In the mid-latitudes, it is exposed by impact craters, steep scarps and gullies.
The climate of Mars has been a topic of scientific curiosity for centuries, in part because it is the only terrestrial planet whose surface can be directly observed in detail from the Earth with help from a telescope. Although Mars is smaller than the Earth, 11% of Earth's mass, and 50% farther from the Sun than the Earth, its climate has important similarities, such as the presence of polar ice caps, seasonal changes and observable weather patterns. It has attracted sustained study from planetologists and climatologists.
Explores the lessons learned from diverse space exploration missions, covering topics such as spacecraft design, lunar sample return, and mission costs.
Biogas-based power-to-X technology allows storing renewable electricity, while producing CO2-neutral products.This work investigates the conversion and upgrading of digestion-derived gas mixtures with focus on increasing the operational flexibility of the ...
Human deep space exploration is presented with multiple challenges, such as the reliable, efficient and sustainable operation of life support systems. The production and recycling of oxygen, carbon dioxide (CO2) and fuels are hereby key, as a resource resu ...
2023
,
Three different power-to-methane process chains with grid injection in two scales (1 MWel and 6 MWel) were analysed regarding their investment and operation cost. The process chains were based on biological or catalytic bubbling fluidised bed methanation i ...