In 1976 two identical Viking program landers each carried four types of biological experiments to the surface of Mars. The first successful Mars landers, Viking 1 and Viking 2, then carried out experiments to look for biosignatures of microbial life on Mars. The landers each used a robotic arm to pick up and place soil samples into sealed test containers on the craft.
The two landers carried out the same tests at two places on Mars' surface, Viking 1 near the equator and Viking 2 further north.
The four experiments below are presented in the order in which they were carried out by the two Viking landers. The biology team leader for the Viking program was Harold P. Klein (NASA Ames).
A gas chromatograph — mass spectrometer (GCMS) is a device that separates vapor components chemically via a gas chromatograph and then feeds the result into a mass spectrometer, which measures the molecular weight of each chemical. As a result, it can separate, identify, and quantify a large number of different chemicals. The GCMS (PI: Klaus Biemann, MIT) was used to analyze the components of untreated Martian soil, and particularly those components that are released as the soil is heated to different temperatures. It could measure molecules present at a level of a few parts per billion.
The GCMS measured no significant amount of organic molecules in the Martian soil. In fact, Martian soils were found to contain less carbon than lifeless lunar soils returned by the Apollo program. This result was difficult to explain if Martian bacterial metabolism was responsible for the positive results seen by the Labeled Release experiment (see below). A 2011 astrobiology textbook notes that this was the decisive factor due to which "For most of the Viking scientists, the final conclusion was that the Viking missions failed to detect life in the Martian soil."
Experiments conducted in 2008 by the Phoenix lander discovered the presence of perchlorate in Martian soil.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
L’atmosphère de Mars est la couche de gaz entourant la planète Mars. La pression au sol de l'atmosphère martienne varie entre () au sommet d'Olympus Mons et () dans les profondeurs de Hellas Planitia. La pression moyenne est de ( soit , environ moins que sur Terre) et sa masse totale est estimée à ( de tonnes), soit environ moins que l'atmosphère terrestre ou encore le double de la masse combinée de ses deux satellites, Phobos et Déimos.
L'eau sur Mars est l'eau présente sur la planète Mars, quelle que soit la forme (solide, liquide, gazeuse, roche hydratée) sous laquelle elle s'y trouve. Le sol martien, d'après les dernières analyses, contient entre 1,5 et 3 % d'eau. Seule une petite quantité de vapeur d'eau est présente dans son atmosphère. Des preuves directes et indirectes de la présence d'eau sur ou sous la surface ont été apportées, telles que des lits de ruisseaux, les calottes polaires, des mesures spectroscopiques, des cratères érodés et des minéraux dont l'existence est liée directement à la présence d'eau liquide (tels que la goethite), de l'hématite cristalline grise, des phyllosilicates, de l'opale et des sulfates.
vignette|Carte montrant les différents climats sur Mars : glacial (A, couche permanente de glace), polaire (B, couvert par du givre en hiver qui se sublime en été), transition (C), tropical (D), tropical à faible albédo (E), plaines subpolaires (F, bassins), plaines tropicales (G, chasmata), montagnes subtropicales (H). Le climat de Mars a été un sujet de curiosité scientifique durant des siècles, notamment parce que Mars est la seule planète tellurique dont la surface peut être directement observée en détail depuis la Terre, à l'aide d'un télescope.
Explore les enseignements tirés de diverses missions d'exploration spatiale, portant notamment sur la conception d'engins spatiaux, le retour d'échantillons lunaires et les coûts de la mission.
Biogas-based power-to-X technology allows storing renewable electricity, while producing CO2-neutral products.This work investigates the conversion and upgrading of digestion-derived gas mixtures with focus on increasing the operational flexibility of the ...
EPFL2022
,
Human deep space exploration is presented with multiple challenges, such as the reliable, efficient and sustainable operation of life support systems. The production and recycling of oxygen, carbon dioxide (CO2) and fuels are hereby key, as a resource resu ...
2023
,
Three different power-to-methane process chains with grid injection in two scales (1 MWel and 6 MWel) were analysed regarding their investment and operation cost. The process chains were based on biological or catalytic bubbling fluidised bed methanation i ...