Summary
The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present. The time delay is caused by spacetime dilation, which increases the time it takes light to travel a given distance from the perspective of an outside observer. In a 1964 article entitled Fourth Test of General Relativity, Shapiro wrote: Because, according to the general theory, the speed of a light wave depends on the strength of the gravitational potential along its path, these time delays should thereby be increased by almost 2×10−4 sec when the radar pulses pass near the sun. Such a change, equivalent to 60 km in distance, could now be measured over the required path length to within about 5 to 10% with presently obtainable equipment. Throughout this article discussing the time delay, Shapiro uses c as the speed of light and calculates the time delay of the passage of light waves or rays over finite coordinate distance according to a Schwarzschild solution to the Einstein field equations. The time delay effect was first predicted in 1964, by Irwin Shapiro. Shapiro proposed an observational test of his prediction: bounce radar beams off the surface of Venus and Mercury and measure the round-trip travel time. When the Earth, Sun, and Venus are most favorably aligned, Shapiro showed that the expected time delay, due to the presence of the Sun, of a radar signal traveling from the Earth to Venus and back, would be about 200 microseconds, well within the limitations of 1960s-era technology. The first tests, performed in 1966 and 1967 using the MIT Haystack radar antenna, were successful, matching the predicted amount of time delay. The experiments have been repeated many times since then, with increasing accuracy.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood