Concept

Mesonet

Summary
In meteorology and climatology, a mesonet, portmanteau of mesoscale network, is a network of automated weather and, often also including environmental monitoring stations, designed to observe mesoscale meteorological phenomena and/or microclimates. Dry lines, squall lines, and sea breezes are examples of phenomena observed by mesonets. Due to the space and time scales associated with mesoscale phenomena and microclimates, weather stations comprising a mesonet are spaced closer together and report more frequently than synoptic scale observing networks, such as the WMO Global Observing System (GOS) and US ASOS. The term mesonet refers to the collective group of these weather stations, which are usually owned and operated by a common entity. Mesonets generally record in situ surface weather observations but some involve other observation platforms, particularly vertical profiles of the planetary boundary layer (PBL). Other environmental parameters may include insolation and various variables of interest to particular users, such as soil temperature or road conditions (the latter notable in Road Weather Information System (RWIS) networks). The distinguishing features that classify a network of weather stations as a mesonet are station density and temporal resolution with sufficiently robust station quality. Depending upon the phenomena meant to be observed, mesonet stations use a spatial spacing of and report conditions every 1 to 15 minutes. Micronets (see microscale and storm scale), such as in metropolitan areas such as Oklahoma City, St. Louis, and Birmingham UK, are yet denser in spatial and sometimes temporal resolution. Thunderstorms and other atmospheric convection, squall lines, drylines, sea and land breezes, mountain breeze and valley breezes, mountain waves, mesolows and mesohighs, wake lows, mesoscale convective vortices (MCVs), tropical cyclone and extratropical cyclone rainbands, macrobursts, gust fronts and outflow boundaries, heat bursts, urban heat islands (UHIs), and other mesoscale phenomena, as well as topographical features, can cause weather and climate conditions in a localized area to be significantly different from that dictated by the ambient large-scale conditions.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.