Concept

Supernova à effondrement de cœur

vignette|upright=1.3|Représentation d'artiste de SN 1987A. La supernova à effondrement de cœur est l'un des deux principaux mécanismes de formation de supernova, l'autre étant la supernova thermonucléaire (). Les types spectraux correspondants sont le , le (si l'étoile a perdu son enveloppe d'hydrogène) ou le (si l'étoile a perdu ses enveloppes d'hydrogène et d'hélium). Ce type de supernova correspond à l'expulsion violente des couches externes des étoiles massives (à partir de ) en fin de vie. Juste avant cette explosion, la partie la plus centrale de l'étoile se contracte. Il en résulte la formation d'une étoile à neutrons ou d'un trou noir. La masse maximale d'une étoile pouvant produire une supernova est estimée à environ solaires. Au-delà de cette masse, l'étoile devrait directement former un trou noir sans engendrer de supernova (voir Collapsar). Avant le phénomène de supernova, une étoile massive fusionne des éléments et crée finalement un noyau de fer. La supernova à effondrement de cœur elle-même comporte trois phases : l'effondrement, avec la transformation du noyau de fer en matière neutronique, le rebond des couches externes de l'étoile sur cette dernière et l'explosion. vignette|Représentation de la structure en « oignon » d'une étoile juste avant la supernova. Le schéma n'est pas à l'échelle. La plus grande partie de la vie d'une étoile se déroule dans la séquence principale jusqu'à ce qu'environ 10 % de son hydrogène soit fusionné en hélium. À partir de ce point, l'étoile se contracte et la température devient assez élevée pour permettre la fusion de l'hélium en carbone. La fusion de l'hélium est suivie par la fusion du carbone en néon, magnésium et oxygène, la fusion de l'oxygène en silicium et finalement du silicium en fer. Le fer étant un élément thermonucléairement inerte, c'est-à-dire qu'on ne peut en extraire d'énergie, ni par fusion, ni par fission nucléaire, le cœur de l'étoile formé par celui-ci se contracte sans qu'aucune libération d'énergie s'oppose au processus.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
PHYS-643: Astrophysics VI : The variable Universe
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
PHYS-439: Introduction to astroparticle physics
We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.
PHYS-402: Astrophysics V : observational cosmology
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen from the point of view of observations.
Afficher plus
Publications associées (48)
Concepts associés (16)
Fusion du silicium
En astrophysique, la fusion du silicium (parfois appelée improprement combustion du silicium) est une phase de fusion nucléaire de quelques semaines (typiquement une à trois semaines) de la fin de vie d'une étoile d'au moins 8 masses solaires. Cette phase commence lorsque ces étoiles ont épuisé tous les combustibles de la séquence principale du diagramme de Hertzsprung-Russell (hydrogène, hélium, carbone, néon, oxygène, magnésium...), ce qui contracte leur cœur jusqu'à le porter à une température de 2,7 à 3,5 GK — la température dépendant de la masse de l'étoile.
Nucléosynthèse explosive
La nucléosynthèse explosive est la création de nouveaux éléments chimiques par une supernova, un collapsar ou une fusion d'étoiles à neutrons au cours de la fusion explosive de l'oxygène et du silicium. Parmi les éléments synthétisés, on trouve par exemple, le soufre, le chlore, l'argon, le sodium, le potassium, le scandium ainsi que des éléments du pic du fer : chrome, manganèse, fer, cobalt et nickel. Leur abondance augmente dans le milieu interstellaire environnant après leur éjection.
Supernova neutrinos
Supernova neutrinos are weakly interactive elementary particles produced during a core-collapse supernova explosion. A massive star collapses at the end of its life, emitting on the order of 1058 neutrinos and antineutrinos in all lepton flavors. The luminosity of different neutrino and antineutrino species are roughly the same. They carry away about 99% of the gravitational energy of the dying star as a burst lasting tens of seconds. The typical supernova neutrino energies are 10MeV.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.