In mathematics, a linear approximation is an approximation of a general function using a linear function (more precisely, an affine function). They are widely used in the method of finite differences to produce first order methods for solving or approximating solutions to equations.
Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case states that
where is the remainder term. The linear approximation is obtained by dropping the remainder:
This is a good approximation when is close enough to ; since a curve, when closely observed, will begin to resemble a straight line. Therefore, the expression on the right-hand side is just the equation for the tangent line to the graph of at . For this reason, this process is also called the tangent line approximation. Linear approximations in this case are further improved when the second derivative of a, , is sufficiently small (close to zero) (i.e., at or near an inflection point).
If is concave down in the interval between and , the approximation will be an overestimate (since the derivative is decreasing in that interval). If is concave up, the approximation will be an underestimate.
Linear approximations for vector functions of a vector variable are obtained in the same way, with the derivative at a point replaced by the Jacobian matrix. For example, given a differentiable function with real values, one can approximate for close to by the formula
The right-hand side is the equation of the plane tangent to the graph of at
In the more general case of Banach spaces, one has
where is the Fréchet derivative of at .
Gaussian optics
Gaussian optics is a technique in geometrical optics that describes the behaviour of light rays in optical systems by using the paraxial approximation, in which only rays which make small angles with the optical axis of the system are considered. In this approximation, trigonometric functions can be expressed as linear functions of the angles. Gaussian optics applies to systems in which all the optical surfaces are either flat or are portions of a sphere.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The main theme in Diopahntine approximation is to approximate a real number by a rational number with a certain denominator bound. The course covers the case of one real number, that is classical and
Le cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, l'approximation de fonctions, intégration et dérivati
Ce cours présente une introduction aux méthodes d'approximation utilisées pour la simulation numérique en mécanique des fluides.Les concepts fondamentaux sont présentés dans le cadre de la méthode d
In calculus, the second derivative, or the second-order derivative, of a function f is the derivative of the derivative of f. Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object with respect to time is the instantaneous acceleration of the object, or the rate at which the velocity of the object is changing with respect to time. In Leibniz notation: where a is acceleration, v is velocity, t is time, x is position, and d is the instantaneous "delta" or change.
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation.
A finite difference is a mathematical expression of the form f (x + b) − f (x + a). If a finite difference is divided by b − a, one gets a difference quotient. The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems. The difference operator, commonly denoted is the operator that maps a function f to the function defined by A difference equation is a functional equation that involves the finite difference operator in the same way as a differential equation involves derivatives.
Higher-order asymptotics provide accurate approximations for use in parametric statistical modelling. In this thesis, we investigate using higher-order approximations in two-specific settings, with a particular emphasis on the tangent exponential model. Th ...
We show that isogeometric Galerkin discretizations of eigenvalue problems related to the Laplace operator subject to any standard type of homogeneous boundary conditions have no outliers in certain optimal spline subspaces. Roughly speaking, these optimal ...
This work develops new algorithms with rigorous efficiency guarantees for infinite horizon imitation learning (IL) with linear function approximation without restrictive coherence assumptions. We begin with the minimax formulation of the problem and then o ...