A flare or decoy flare is an aerial infrared countermeasure used by a plane or helicopter to counter an infrared homing ("heat-seeking") surface-to-air missile or air-to-air missile. Flares are commonly composed of a pyrotechnic composition based on magnesium or another hot-burning metal, with burning temperature equal to or hotter than engine exhaust. The aim is to make the infrared-guided missile seek out the heat signature from the flare rather than the aircraft's engines.
In contrast to radar-guided missiles, IR-guided missiles are very difficult to find as they approach aircraft. They do not emit detectable radar, and they are generally fired from behind, directly toward the engines. In most cases, pilots have to rely on their wingmen to spot the missile's smoke trail and alert of a launch. Since IR-guided missiles have a shorter range than their radar-guided counterparts, good situational awareness of altitude and potential threats continues to be an effective defense. More advanced electro-optical systems can detect missile launches automatically from the distinct thermal emissions of a missile's rocket motor.
Once the presence of a "live" IR missile is indicated, flares are released by the aircraft in an attempt to decoy the missile. Some systems are automatic, while others require manual jettisoning of the flares. The aircraft would then pull away at a sharp angle from the flare (and the terminal trajectory of the missile) and reduce engine power in attempt to cool the thermal signature. Ideally the missile's seeker head is then confused by this change in temperature and flurry of new heat signatures, and starts to follow one of the flares rather than the aircraft.
More modern IR-guided missiles have sophisticated on-board electronics and secondary electro-optical sensors that help discriminate between flares and targets, reducing the effectiveness of flares as a reactionary countermeasure. A newer procedure involves preemptively deploying flares in anticipation of a missile launch, which distorts the expected image of the target should one be let loose.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An electronic countermeasure (ECM) is an electrical or electronic device designed to trick or deceive radar, sonar, or other detection systems, like infrared (IR) or lasers. It may be used both offensively and defensively to deny targeting information to an enemy. The system may make many separate targets appear to the enemy, or make the real target appear to disappear or move about randomly. It is used effectively to protect aircraft from guided missiles. Most air forces use ECM to protect their aircraft from attack.
An air-to-air missile (AAM) is a missile fired from an aircraft for the purpose of destroying another aircraft. AAMs are typically powered by one or more rocket motors, usually solid fueled but sometimes liquid fueled. Ramjet engines, as used on the Meteor, are emerging as propulsion that will enable future medium- to long-range missiles to maintain higher average speed across their engagement envelope. Air-to-air missiles are broadly put in two groups.