Snowpack forms from layers of snow that accumulate in geographic regions and high elevations where the climate includes cold weather for extended periods during the year. Snowpacks are an important water resource that feed streams and rivers as they melt. Therefore, snowpacks are both the drinking water source for many communities and a potential source of flooding (in case of sudden melting). Snowpacks also contribute mass to glaciers in their accumulation zone.
Assessing the formation and stability of snowpacks is important in the study and prediction of avalanches. Scientists study the physical properties of snow under different conditions and their evolution, and more specifically snow metamorphism, snow hydrology (that is, the contribution of snow melt to catchment hydrology), the evolution of snow cover with climate change and its effect on the ice–albedo feedback and hydrology, both on the ground and by using remote sensing. Snow is also studied in a more global context of impact on animal habitats and plant succession. An important effort is put into snow classification, both as a hydrometeor and on the ground.
Snowpack modeling is done for snow stability, flood forecasting, water resource management, and climate studies. Snowpack modeling is either done by simple, statistical methods such as degree day or complex, physically based energy balance models such as the SNOWPACK model, the CROCUS model or SNOWMODEL.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Snow comprises individual ice crystals that grow while suspended in the atmosphere—usually within clouds—and then fall, accumulating on the ground where they undergo further changes. It consists of frozen crystalline water throughout its life cycle, starting when, under suitable conditions, the ice crystals form in the atmosphere, increase to millimeter size, precipitate and accumulate on surfaces, then metamorphose in place, and ultimately melt, slide or sublimate away.
Hydrology () is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and drainage basin sustainability. A practitioner of hydrology is called a hydrologist. Hydrologists are scientists studying earth or environmental science, civil or environmental engineering, and physical geography. Using various analytical methods and scientific techniques, they collect and analyze data to help solve water related problems such as environmental preservation, natural disasters, and water management.
A glacier (USpronˈɡleɪʃər; UKˈɡlæsiər,_ˈgleɪsiər) is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords.
This course covers principles of snow physics, snow hydrology, snow-atmosphere interaction and snow modeling. It transmits sound understanding of physical processes within the snow and at its interfac
The modern techniques and methods to measure snow properties in the field and in the laboratory are introduced by specialists in the corresponding field. The methods are applied in the field and in th
Snow plays a crucial role in processes regulating ecosystems, the climate, and human development. Mountain snowpack in particular has great relevance for downstream communities. Knowledge about the distribution and properties of the snowpack thus help in p ...
Convection of water vapor in snowpacks is supposed to have a major impact on snow density and microstructure profiles with strong implications for the thermal regime and snow stability. However, the process has never been directly measured and only recentl ...
In high elevation Alpine areas, characterised by high snow accumulation and radiation-driven melt processes, the formation of peculiar ablation features called sun cups can be observed. Sun cups likely influence the energy and mass balance of the wet snowp ...