In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K. The extended Riemann hypothesis states that if ζK(s) = 0 and 0 < Re(s) < 1, then Re(s) = 1/2.
The Dedekind zeta function is named for Richard Dedekind who introduced it in his supplement to Peter Gustav Lejeune Dirichlet's Vorlesungen über Zahlentheorie.
Let K be an algebraic number field. Its Dedekind zeta function is first defined for complex numbers s with real part Re(s) > 1 by the Dirichlet series
where I ranges through the non-zero ideals of the ring of integers OK of K and NK/Q(I) denotes the absolute norm of I (which is equal to both the index [OK : I] of I in OK or equivalently the cardinality of quotient ring OK / I). This sum converges absolutely for all complex numbers s with real part Re(s) > 1. In the case K = Q, this definition reduces to that of the Riemann zeta function.
The Dedekind zeta function of has an Euler product which is a product over all the non-zero prime ideals of
This is the expression in analytic terms of the uniqueness of prime factorization of ideals in . For is non-zero.
Erich Hecke first proved that ζK(s) has an analytic continuation to the complex plane as a meromorphic function, having a simple pole only at s = 1. The residue at that pole is given by the analytic class number formula and is made up of important arithmetic data involving invariants of the unit group and class group of K.
The Dedekind zeta function satisfies a functional equation relating its values at s and 1 − s. Specifically, let ΔK denote the discriminant of K, let r1 (resp. r2) denote the number of real places (resp.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we wi
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers, and it regulates which primes are ramified. The discriminant is one of the most basic invariants of a number field, and occurs in several important analytic formulas such as the functional equation of the Dedekind zeta function of K, and the analytic class number formula for K.
In commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an ideal in a less complicated ring. When the less complicated number ring is taken to be the ring of integers, Z, then the norm of a nonzero ideal I of a number ring R is simply the size of the finite quotient ring R/I.
Explores the Galois correspondence and solvability by radicals in polynomial equations.
Explores meromorphic functions, poles, residues, orders, divisors, and the Riemann-Roch theorem.
Explores solvability by radicals in Galois theory and the Galois/Abel criterion for solvability.
Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, an ...
Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of an analytical function to obtain a few new criteria equivalent to the Riemann hypothesis. Here, the same theorem is applied to calcul ...
We consider a class of parabolic stochastic PDEs on bounded domains D c Rd that includes the stochastic heat equation but with a fractional power gamma of the Laplacian. Viewing the solution as a process with values in a scale of fractional Sobolev spaces ...