Algebraic number fieldIn mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
Discriminant of an algebraic number fieldIn mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers, and it regulates which primes are ramified. The discriminant is one of the most basic invariants of a number field, and occurs in several important analytic formulas such as the functional equation of the Dedekind zeta function of K, and the analytic class number formula for K.
Ideal normIn commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an ideal in a less complicated ring. When the less complicated number ring is taken to be the ring of integers, Z, then the norm of a nonzero ideal I of a number ring R is simply the size of the finite quotient ring R/I.
Class number formulaIn number theory, the class number formula relates many important invariants of a number field to a special value of its Dedekind zeta function. We start with the following data: K is a number field. [K : Q] = n = r1 + 2r2, where r1 denotes the number of real embeddings of K, and 2r2 is the number of complex embeddings of K. ζK(s) is the Dedekind zeta function of K. hK is the class number, the number of elements in the ideal class group of K. RegK is the regulator of K. wK is the number of roots of unity contained in K.
Dirichlet's unit theoremIn mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are. The statement is that the group of units is finitely generated and has rank (maximal number of multiplicatively independent elements) equal to where r1 is the number of real embeddings and r2 the number of conjugate pairs of complex embeddings of K.
Splitting of prime ideals in Galois extensionsIn mathematics, the interplay between the Galois group G of a Galois extension L of a number field K, and the way the prime ideals P of the ring of integers OK factorise as products of prime ideals of OL, provides one of the richest parts of algebraic number theory. The splitting of prime ideals in Galois extensions is sometimes attributed to David Hilbert by calling it Hilbert theory. There is a geometric analogue, for ramified coverings of Riemann surfaces, which is simpler in that only one kind of subgroup of G need be considered, rather than two.
Richard DedekindJulius Wilhelm Richard Dedekind ˈdeːdəˌkɪnt (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His best known contribution is the definition of real numbers through the notion of Dedekind cut. He is also considered a pioneer in the development of modern set theory and of the philosophy of mathematics known as Logicism.
Algebraic K-theoryAlgebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.
Ideal class groupIn number theory, the ideal class group (or class group) of an algebraic number field K is the quotient group JK/PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K. The theory extends to Dedekind domains and their field of fractions, for which the multiplicative properties are intimately tied to the structure of the class group.
Riemann hypothesisIn mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named.