Clay minerals are hydrous aluminium phyllosilicates (e.g. kaolin, Al2Si2O5(OH)4), sometimes with variable amounts of iron, magnesium, alkali metals, alkaline earths, and other cations found on or near some planetary surfaces.
Clay minerals form in the presence of water and have been important to life, and many theories of abiogenesis involve them. They are important constituents of soils, and have been useful to humans since ancient times in agriculture and manufacturing.
Pottery
Clay is a very fine-grained geologic material that develops plasticity when wet, but becomes hard, brittle and non–plastic upon drying or firing. It is a very common material, and is the oldest known ceramic. Prehistoric humans discovered the useful properties of clay and used it for making pottery. The chemistry of clay, including its capacity to retain nutrient cations such as potassium and ammonium, is important to soil fertility.
Because the individual particles in clay are less than in size, they cannot be characterized by ordinary optical or physical methods. The crystallographic structure of clay minerals became better understood in the 1930s with advancements in the x-ray diffraction (XRD) technique indispensable to deciphering their crystal lattice. Clay particles were found to be predominantly sheet silicate (phyllosilicate) minerals, now grouped together as clay minerals. Their structure is based on flat hexagonal sheets similar to those of the mica group of minerals. Standardization in terminology arose during this period as well, with special attention given to similar words that resulted in confusion, such as sheet and plane.
Because clay minerals are usually (but not necessarily) ultrafine-grained, special analytical techniques are required for their identification and study. In addition to X-ray crystallography, these include electron diffraction methods, various spectroscopic methods such as Mössbauer spectroscopy, infrared spectroscopy, Raman spectroscopy, and SEM-EDS or automated mineralogy processes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust. In mineralogy, silica (silicon dioxide, ) is usually considered a silicate mineral. Silica is found in nature as the mineral quartz, and its polymorphs. On Earth, a wide variety of silicate minerals occur in an even wider range of combinations as a result of the processes that have been forming and re-working the crust for billions of years.
Marl is an earthy material rich in carbonate minerals, clays, and silt. When hardened into rock, this becomes marlstone. It is formed in marine or freshwater environments, often through the activities of algae. Marl makes up the lower part of the cliffs of Dover, and the Channel Tunnel follows these marl layers between France and the United Kingdom. Marl is also a common sediment in post-glacial lakes, such as the marl ponds of the northeastern United States.
Vermiculite is a hydrous phyllosilicate mineral which undergoes significant expansion when heated. Exfoliation occurs when the mineral is heated sufficiently; commercial furnaces can routinely produce this effect. Vermiculite forms by the weathering or hydrothermal alteration of biotite or phlogopite. Large commercial vermiculite mines exist in the United States, Russia, South Africa, China, and Brazil. Vermiculite was first described in 1824 for an occurrence in Millbury, Massachusetts.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Le but est de former doctorants et post doctorants aux méthodes de charactérisation des ciments composés comme la microstructure, la diffraction des rayons X, la calorimétrie, la formulation et la dur
Les ingénieurs civils exercent leurs activités en constante interaction avec le sous-sol.
Le cours de géologie donne aux étudiants les bases en Géosciences nécessaires à une ingénierie bien intégrée d
Le cours est une introduction aux Sciences du sol. Il a pour but de présenter les principales caractéristiques, propriétés et fonctions des sols. Il fait appel à des notions théoriques mais également
(Mg,Fe)O ferropericlase-magnesiow & uuml;stite has been proposed to host the majority of Earth's sodium, but the mechanism and capacity for incorporating the alkali cation remain unclear. In this work, experiments in the laser-heated diamond anvil cell and ...
Amer Geophysical Union2024
, ,
Water is ubiquitous within the pore space of rocks and has been shown to affect their physical and mechanical behaviour. Indeed, water can act on the rock strength via mechanical (i.e., reducing the effective stresses) or chemical effects (e.g., mineral di ...
2024
Sorption of mercury (Hg) in soils is suggested to be predominantly associated with organic matter (OM). However, there is a growing collection of research that suggests that clay minerals and oxides are also important solid phases for the sorption of solu ...