Calcination refers to thermal treatment of a solid chemical compound (e.g. mixed carbonate ores) whereby the compound is raised to high temperature without melting under restricted supply of ambient oxygen (i.e. gaseous O2 fraction of air), generally for the purpose of removing impurities or volatile substances and/or to incur thermal decomposition.
The root of the word calcination refers to its most prominent use, which is to remove carbon from limestone (calcium carbonate) through combustion to yield calcium oxide (quicklime). This calcination reaction is CaCO3(s) → CaO(s) + CO2(g). Calcium oxide is a crucial ingredient in modern cement, and is also used as a chemical flux in smelting. Industrial calcination generally emits carbon dioxide (), making it a major contributor to climate change.
A calciner is a steel cylinder that rotates inside a heated furnace and performs indirect high-temperature processing (550–1150 °C, or 1000–2100 °F) within a controlled atmosphere.
The process of calcination derives its name from the Latin calcinare 'to burn lime' due to its most common application, the decomposition of calcium carbonate (limestone) to calcium oxide (lime) and carbon dioxide, in order to create cement. The product of calcination is usually referred to in general as "calcine", regardless of the actual minerals undergoing thermal treatment. Calcination is carried out in furnaces or reactors (sometimes referred to as kilns or calciners) of various designs including shaft furnaces, rotary kilns, multiple hearth furnaces, and fluidized bed reactors.
Examples of calcination processes include the following:
decomposition of carbonate ores, as in the calcination of limestone to drive off carbon dioxide;
decomposition of hydrated minerals, as in the calcination of bauxite and gypsum, carbonate ore to remove water of crystallization as water vapor;
decomposition of volatile matter contained in raw petroleum coke;
heat treatment to effect phase transformations, as in conversion of anatase to rutile or devitrification of glass materials;
removal of ammonium ions in the synthesis of zeolites;
defluorination of uranyl fluoride to create uranium dioxide and hydrofluoric acid gas;
heat treatment of anthracite through electrically fired calcining furnace or gas calcination which results in development of graphitic structure.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but est de former doctorants et post doctorants aux méthodes de charactérisation des ciments composés comme la microstructure, la diffraction des rayons X, la calorimétrie, la formulation et la dur
Lime is an inorganic material composed primarily of calcium oxides and hydroxides, usually calcium oxide and/or calcium hydroxide. It is also the name for calcium oxide which occurs as a product of coal-seam fires and in altered limestone xenoliths in volcanic ejecta. The International Mineralogical Association recognizes lime as a mineral with the chemical formula of CaO. The word lime originates with its earliest use as building mortar and has the sense of sticking or adhering.
Mercury is a chemical element with the symbol Hg and atomic number 80. It is also known as quicksilver and was formerly named hydrargyrum (haɪˈdrɑrdʒərəm ) from the Greek words hydro (water) and argyros (silver). A heavy, silvery d-block element, mercury is the only metallic element that is known to be liquid at standard temperature and pressure; the only other element that is liquid under these conditions is the halogen bromine, though metals such as caesium, gallium, and rubidium melt just above room temperature.
Calcium oxide (formula: CaO), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. The broadly used term lime connotes calcium-containing inorganic compounds, in which carbonates, oxides, and hydroxides of calcium, silicon, magnesium, aluminium, and iron predominate. By contrast, quicklime specifically applies to the single compound calcium oxide. Calcium oxide that survives processing without reacting in building products, such as cement, is called free lime.
Explores critical analysis of scientific papers and the design of MoS2 catalysts for hydrogen evolution reactions, emphasizing nanostructuring and catalyst characterization.
Graphdiyne (GDY) with a direct bandgap, high charge carrier mobility, and ordered pore structure, is considered an excellent matrix for the construction of heterojunction photocatalysts. However, the traditional fabrication methods for GDY-based heterojunc ...
ROYAL SOC CHEMISTRY2023
, , , , , , ,
The use of calcined clays as supplementary cementitious materials provides the opportunity to significantly reduce the cement industry's carbon burden; however, use at a global scale requires a deep understanding of the extraction and processing of the cla ...
Valorisation of locally available clays for producing blended cements is crucial for a widespread adoption of sustainable binders incorporating these materials. In some places, clays can be intermixed with small amounts of iron sulfides, which could eventu ...