In mathematics, a binary relation on a set is antisymmetric if there is no pair of distinct elements of each of which is related by to the other. More formally, is antisymmetric precisely if for all
or equivalently,
The definition of antisymmetry says nothing about whether actually holds or not for any . An antisymmetric relation on a set may be reflexive (that is, for all ), irreflexive (that is, for no ), or neither reflexive nor irreflexive. A relation is asymmetric if and only if it is both antisymmetric and irreflexive.
The divisibility relation on the natural numbers is an important example of an antisymmetric relation. In this context, antisymmetry means that the only way each of two numbers can be divisible by the other is if the two are, in fact, the same number; equivalently, if and are distinct and is a factor of then cannot be a factor of For example, 12 is divisible by 4, but 4 is not divisible by 12.
The usual order relation on the real numbers is antisymmetric: if for two real numbers and both inequalities and hold, then and must be equal. Similarly, the subset order on the subsets of any given set is antisymmetric: given two sets and if every element in also is in and every element in is also in then and must contain all the same elements and therefore be equal:
A real-life example of a relation that is typically antisymmetric is "paid the restaurant bill of" (understood as restricted to a given occasion). Typically, some people pay their own bills, while others pay for their spouses or friends. As long as no two people pay each other's bills, the relation is antisymmetric.
Partial and total orders are antisymmetric by definition. A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species).
Antisymmetry is different from asymmetry: a relation is asymmetric if and only if it is antisymmetric and irreflexive.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word partial is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable. Formally, a partial order is a homogeneous binary relation that is reflexive, transitive and antisymmetric.
In mathematics, a binary relation associates elements of one set, called the domain, with elements of another set, called the codomain. A binary relation over sets X and Y is a new set of ordered pairs (x, y) consisting of elements x in X and y in Y. It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element x is related to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation.
In mathematics, a binary relation R on a set X is reflexive if it relates every element of X to itself. An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.
Coordination languages simplify design and development of concurrent systems. Particularly, exogenous coordination languages, like BIP and Reo, enable system designers to express the interactions among components in a system explicitly. A formal relation b ...
Today's rapid advances in quantum computing hardware call for scalable synthesis methods to map combinational logic represented as multi-level Boolean networks (e.g., an and inverter graph, AIG) to quantum circuits. Such synthesis process must yield revers ...
Coordination languages simplify design and development of concurrent systems. Particularly, exogenous coordination languages, like BIP and Reo, enable system designers to express the interactions among components in a system explicitly. In this paper we es ...