Material nonimplication or abjunction (Latin ab = "away", junctio= "to join") is the negation of material implication. That is to say that for any two propositions and , the material nonimplication from to is true if and only if the negation of the material implication from to is true. This is more naturally stated as that the material nonimplication from to is true only if is true and is false.
It may be written using logical notation as , , or "Lpq" (in Bocheński notation), and is logically equivalent to , and .
Material nonimplication may be defined as the negation of material implication.
In classical logic, it is also equivalent to the negation of the disjunction of and , and also the conjunction of and
falsehood-preserving: The interpretation under which all variables are assigned a truth value of "false" produces a truth value of "false" as a result of material nonimplication.
The symbol for material nonimplication is simply a crossed-out material implication symbol. Its Unicode symbol is 219B16 (8603 decimal): ↛.
"p minus q."
"p without q."
"p but not q."
"q is false, in spite of p.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. In particular, truth tables can be used to show whether a propositional expression is true for all legitimate input values, that is, logically valid.
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (and) denoted as ∧, disjunction (or) denoted as ∨, and the negation (not) denoted as ¬.
In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits. It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor. Most bitwise operations are presented as two-operand instructions where the result replaces one of the input operands. On simple low-cost processors, typically, bitwise operations are substantially faster than division, several times faster than multiplication, and sometimes significantly faster than addition.