La non-implication matérielle, ou abjonction, (latin ab = "de", junctio =–"jonction") est un des 16 connecteurs binaires de la logique classique propositionnelle bivalente.
Au sein de cette logique elle exprime la négation de l'implication matérielle. Cela revient à dire que pour deux propositions P et Q, la non-implication matérielle de P à Q est vrai si et seulement si non P implique Q. Ceci est plus naturellement déclaré comme la non-implication de P à Q est vrai seulement si P est vrai et Q est faux.
Il peut être écrit en utilisant la notation logique :
p⊅q
Lpq
p↛q
Et est équivalent à:
p∧~q
Le symbole pour la non-implication est un symbole d'implication logique barré. Son symbole Unicode est 8603 (décimal).
"p mais pas q.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Une table de vérité (parfois appelée fonction de vérité) est une table mathématique utilisée en logique classique — en particulier le calcul propositionnel classique et l'algèbre de Boole — pour représenter de manière sémantique des expressions logiques et calculer la valeur de leur fonction relativement à chacun de leurs arguments fonctionnels (chaque combinaison de valeur assumée par leurs variables logiques).
Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
En logique, une opération bit à bit est un calcul manipulant les données directement au niveau des bits, selon une arithmétique booléenne. Elles sont utiles dès qu'il s'agit de manipuler les données à bas niveau : codages, couches basses du réseau (par exemple TCP/IP), cryptographie, où elles permettent également les opérations sur les corps finis de caractéristique 2. Les opérations bit à bit courantes comprennent des opérations logiques bit par bit et des opérations de décalage des bits, vers la droite ou vers la gauche.