Summary
In colloidal chemistry, flocculation is a process by which colloidal particles come out of suspension to sediment in the form of floc or flake, either spontaneously or due to the addition of a clarifying agent. The action differs from precipitation in that, prior to flocculation, colloids are merely suspended, under the form of a stable dispersion (where the internal phase (solid) is dispersed throughout the external phase (fluid) through mechanical agitation) and are not truly dissolved in solution. Coagulation and flocculation are important processes in water treatment with coagulation aimed to destabilize and aggregate particles through chemical interactions between the coagulant and colloids, and flocculation to sediment the destabilized particles by causing their aggregation into floc. According to the IUPAC definition, flocculation is "a process of contact and adhesion whereby the particles of a dispersion form larger-size clusters". Flocculation is synonymous with agglomeration and coagulation / coalescence. Basically, coagulation is a process of addition of coagulant to destabilize a stabilized charged particle. Meanwhile, flocculation is a mixing technique that promotes agglomeration and assists in the settling of particles. The most common used coagulant is alum, Al2(SO4)3·14H2O. The chemical reaction involved: Al2(SO4)3 · 14 H2O → 2 Al(OH)3 () + 6 H+ + 3 SO42- + 8 H2O During flocculation, gentle mixing accelerates the rate of particle collision, and the destabilized particles are further aggregated and enmeshed into larger precipitates. Flocculation is affected by several parameters, including mixing speeds, mixing intensity, and mixing time. The product of the mixing intensity and mixing time is used to describe flocculation processes. The process by which the dosage and choice of flocculant are selected is called a jar test. The equipment used for jar testing consists of one or more beakers, each equipped with a paddle mixer. After the addition of flocculants, rapid mixing takes place, followed by slow mixing and later the sedimentation process.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.