Publication

ACACIA: a new method to produce on-the-fly merger trees in the RAMSES code

Mladen Ivkovic
2022
Journal paper
Abstract

The implementation of ACACIA, a new algorithm to generate dark matter halo merger trees with the Adaptive Mesh Refinement code RAMSES, is presented. The algorithm is fully parallel and based on the Message Passing Interface. As opposed to most available merger tree tools, it works on the fly during the course of the N-body simulation. It can track dark matter substructures individually using the index of the most bound particle in the clump. Once a halo (or a sub-halo) merges into another one, the algorithm still tracks it through the last identified most bound particle in the clump, allowing to check at later snapshots whether the merging event was definitive, or whether it was only temporary, with the clump only traversing another one. The same technique can be used to track orphan galaxies that are not assigned to a parent clump anymore because the clump dissolved due to numerical overmerging. We study in detail the impact of various parameters on the resulting halo catalogues and corresponding merger histories. We then compare the performance of our method using standard validation diagnostics, demonstrating that we reach a quality similar to the best available and commonly used merger tree tools. As a proof of concept, we use our merger tree algorithm together with a parametrized stellar-mass-to-halo-mass relation and generate a mock galaxy catalogue that shows good agreement with observational data.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.