A gas-fired power plant (sometimes referred to as "gas-fired power station" or "natural gas power plant") is a thermal power station that burns natural gas to generate electricity. Gas-fired power plants generate almost a quarter of world electricity and are significant sources of greenhouse gas emissions. However, they can provide seasonal, dispatchable energy generation to compensate for variable renewable energy deficits, where hydropower or interconnectors are not available.
Thermal power station
A gas-fired power plant is a type of fossil fuel power station in which chemical energy stored in natural gas, which is mainly methane, is converted successively into: thermal energy, mechanical energy and, finally, electrical energy. Although they cannot exceed the Carnot cycle limit for conversion of heat energy into useful work the excess heat may be used in cogeneration plants to heat buildings, produce hot water, or to heat materials on an industrial scale.
In a simple cycle gas-turbine, also known as open-cycle gas-turbine (OCGT), hot gas drives a gas turbine to generate electricity. This type of plant is relatively cheap to build and can start very quickly, but due to its lower efficiency is at most is only run for a few hours a day as a peaking power plant.
Combined cycle power plant
CCGT power plants consist of simple cycle gas-turbines which use the Brayton cycle, followed by a heat recovery steam generator and a steam turbine which use the Rankine cycle. The most common configuration is two gas-turbines supporting one steam turbine. They are more efficient than simple cycle plants and can achieve efficiencies up to 55% and dispatch times of around half an hour.
Reciprocating engine
Reciprocating internal combustion engines tend to be under 20MW, so much smaller than other types of natural gas-fired electricity generator, and are typically used for emergency power or to balance variable renewable energy such as wind and solar.
In total gas-fired power stations emit about of per kilowatt-hour of electricity generated.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
The course aims at developing machine learning algorithms that are able to use condition monitoring data efficiently and detect occurring faults in complex industrial assets, isolate their root cause
This course presents an overview of (i) the current energy system and uses (ii) the main principles of conventional and renewable energy technologies and (iii) the most important parameters that defin
Variable renewable energy (VRE) or intermittent renewable energy sources (IRES) are renewable energy sources that are not dispatchable due to their fluctuating nature, such as wind power and solar power, as opposed to controllable renewable energy sources, such as dammed hydroelectricity or biomass, or relatively constant sources, such as geothermal power. The use of small amounts of intermittent power has little effect on grid operations. Using larger amounts of intermittent power may require upgrades or even a redesign of the grid infrastructure.
Green hydrogen (GH2 or GH2) is hydrogen generated by renewable energy or from low-carbon power. Green hydrogen has significantly lower carbon emissions than grey hydrogen, which is derived from fossil fuels without carbon capture. Green hydrogen may be used to decarbonize sectors that are hard to electrify, such as cement and iron production. Green hydrogen can be used to produce green ammonia, the main constituent of synthetic fertilizer. It can also be used for long-duration grid energy storage, and for long-duration seasonal energy storage.
A thermal power station is a type of power station in which heat energy is converted to electrical energy. In a steam-generating cycle heat is used to boil water in a large pressure vessel to produce high-pressure steam, which drives a steam turbine connected to an electrical generator. The low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate more high pressure steam. This is known as a Rankine cycle.
Industrial chemistry heavily relies on traditional separation methods which are both energy-demanding and environmentally detrimental. This thesis addresses critical separation challenges, specifically carbon capture applications and the separation of ethy ...
Phasing out coal-fired electricity is an urgent global task, critical to efforts to mitigate climate change and air pollution. Despite the growth and increasing competitiveness of renewable energy, phase-out progress is slow, with coal-fired power even rea ...
In the framework of the XFLEX HYDRO H2020 European Project, the pumped-storage power plant of Grand'Maison (France), owned by Electricité De France, focuses on the implementation of the hydraulic short-circuit (HSC) operating mode. This mode increases the ...