In photography and optics, vignetting is a reduction of an image's brightness or saturation toward the periphery compared to the image center. The word vignette, from the same root as vine, originally referred to a decorative border in a book. Later, the word came to be used for a photographic portrait that is clear at the center and fades off toward the edges. A similar effect is visible in photographs of projected images or videos off a projection screen, resulting in a so-called "hotspot" effect.
Vignetting is often an unintended and undesired effect caused by camera settings or lens limitations. However, it is sometimes deliberately introduced for creative effect, such as to draw attention to the center of the frame. A photographer may deliberately choose a lens that is known to produce vignetting to obtain the effect, or it may be introduced with the use of special filters or procedures.
When using zoom lenses, vignetting may occur all along the zoom range, depending on the aperture and the focal length. However, it may not always be visible, except at the widest end (the shortest focal length). In these cases, vignetting may cause an exposure value (EV) difference of up to 3EV.
There are several causes of vignetting. Sidney F. Ray distinguishes the following types:
Mechanical vignetting
Optical vignetting
Natural vignetting
A fourth cause is unique to digital imaging:
Pixel vignetting
A fifth cause is unique to analog imaging:
Photographic film vignetting
Mechanical vignetting occurs when light beams emanating from object points located off-axis are partially blocked by external objects such as thick or stacked filters, secondary lenses, and improper lens hoods. This has the effect of changing the entrance pupil shape as a function of angle (resulting in the path of light being partially blocked). Darkening can be gradual or abrupt – the smaller the aperture, the more abrupt the vignetting as a function of angle.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A pinhole camera is a simple camera without a lens but with a tiny aperture (the so-called pinhole)—effectively a light-proof box with a small hole in one side. Light from a scene passes through the aperture and projects an inverted image on the opposite side of the box, which is known as the camera obscura effect. The size of the images depends on the distance between the object and the pinhole. The camera obscura or pinhole image is a natural optical phenomenon.
An f-number is a measure of the light-gathering ability of any optical system like a camera lens or even the human eye. It is calculated by dividing the system's focal length by the diameter of the entrance pupil. The f-number is also known as the focal ratio, f-ratio, or f-stop, and it is key in determining the depth of field, rate of light scattering, and exposure of a photograph. The f-number is dimensionless that is usually expressed using a lower-case hooked f with the format N, where N is the f-number.
In photography, angle of view (AOV) describes the angular extent of a given scene that is imaged by a camera. It is used interchangeably with the more general term field of view. It is important to distinguish the angle of view from the angle of coverage, which describes the angle range that a lens can image. Typically the produced by a lens is large enough to cover the film or sensor completely, possibly including some vignetting toward the edge.
Optical microscopy is an essential tool for biologists, who are often faced with the need to overcome the spatial and temporal resolution limitations of their devices to capture finer details. As upgrading imaging hardware is expensive, computational metho ...
Optical retrieval of the structure of transparent objects at the nanoscale requires adapted techniques capable of probing their interaction with light. Here, we considered a method based on calibration of the defocusing with partially coherent illumination ...
2020
, ,
Optical retrieval of the structure of transparent objects at the nano-scale requires adapted methods capable of probing their interaction with suitable light. Scattering events, for instance, depend on the content and the arrangement of the medium encounte ...