Summary
Fossil fuel phase-out is the gradual reduction of the use and production of fossil fuels to zero, to reduce deaths and illness from air pollution, limit climate change, and strengthen energy independence. It is part of the ongoing renewable energy transition. Although many countries are shutting down coal-fired power stations, electricity generation is not moving off coal fast enough to meet climate goals. Many countries have set dates to stop selling petrol and diesel cars and trucks, but a timetable to stop burning fossil gas has not yet been agreed. Current efforts in fossil fuel phase-out involve replacing fossil fuels with sustainable energy sources in sectors such as transport and heating. Alternatives to fossil fuels include electrification, green hydrogen and biofuel. Phase-out policies include both demand-side and supply-side measures. Whereas demand-side approaches seek to reduce fossil-fuel consumption, supply-side initiatives seek to constrain production to accelerate the pace of energy transition and reduction in emissions. It has been suggested that laws should be passed to make fossil fuel companies bury the same amount of carbon as they emit. The International Energy Agency estimates that in order to achieve carbon neutrality by the middle of the century, global investments in renewable energy must treble by 2030, reaching over $4 trillion annually. While crude oil and natural gas are also being phased out in chemical processes (e.g. production of new building blocks for plastics) as the circular economy and biobased economy (e.g. bioplastics) are being developed to reduce plastic pollution, the fossil fuel phase out specifically aims to end the burning of fossil fuels and the consequent production of greenhouse gases. Therefore, attempts to reduce the use of oil and gas in the plastic industry do not form part of fossil fuel phase-out or reduction plans. Coal phase-out Beyond Coal Coal use peaked in 2013 but to meet the Paris Agreement target of keeping global warming to well below coal use needs to halve from 2020 to 2030.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (30)
ENG-410: Energy supply, economics and transition
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
ENG-636: NRG2019: Energy Systems: managing the transition to renewables
This Summer School will try to bring to together these very disparate topics including energy policy, modeling and technologies in one coherent single event and give the participants a unique perspect
ChE-414: Thermodynamics of energy conversion and storage
The course is an introduction to the energy conversion. It focusses on the thermodynamics of the engines and systems for the conversion of energy from fossil fuels and renewable resources. The relevan
Show more
Related lectures (86)
Limits to Market Governance of Energy in Societal Transitions
Examines the limitations of market governance in societal energy transitions and the impact of fossil fuels on mortality and health.
Energy Transition: Strategic Decisions and Project Objectives
Covers strategic energy decisions, nuclear phase-out impact analysis, and project objectives for Swiss energy transition.
Show more
Related publications (318)
Related concepts (36)
Renewable energy commercialization
Renewable energy commercialization involves the deployment of three generations of renewable energy technologies dating back more than 100 years. First-generation technologies, which are already mature and economically competitive, include biomass, hydroelectricity, geothermal power and heat. Second-generation technologies are market-ready and are being deployed at the present time; they include solar heating, photovoltaics, wind power, solar thermal power stations, and modern forms of bioenergy.
Fossil fuels lobby
The fossil fuels lobby includes paid representatives of corporations involved in the fossil fuel industry (oil, gas, coal), as well as related industries like chemicals, plastics, aviation and other transportation. Because of their wealth and the importance of energy, transport and chemical industries to local, national and international economies, these lobbies have the capacity and money to attempt to have outsized influence governmental policy.
Peak coal
Peak coal is the peak consumption or production of coal by a human community. Global coal consumption peaked in 2013, and had dropped slightly by the end of the 2010s. The peak of coal's share in the global energy mix was in 2008, when coal accounted for 30% of global energy production. The decline in coal use is largely driven by consumption declines in the United States and Europe, as well as developed economies in Asia. In 2019, production increases in countries such as China, Indonesia, India, Russia and Australia compensated for the falls in the United States and Europe.
Show more
Related MOOCs (3)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Analyse du cycle de vie environmental
MOOC introduction à la pensée du cycle de vie et aux concepts théoriques pour réaliser et critiquer une analyse du cycle de vie.
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.