A federated database system (FDBS) is a type of meta-database management system (DBMS), which transparently maps multiple autonomous database systems into a single federated database. The constituent databases are interconnected via a computer network and may be geographically decentralized. Since the constituent database systems remain autonomous, a federated database system is a contrastable alternative to the (sometimes daunting) task of merging several disparate databases. A federated database, or virtual database, is a composite of all constituent databases in a federated database system. There is no actual data integration in the constituent disparate databases as a result of data federation.
Through data abstraction, federated database systems can provide a uniform user interface, enabling users and clients to store and retrieve data from multiple noncontiguous databases with a single query—even if the constituent databases are heterogeneous. To this end, a federated database system must be able to decompose the query into subqueries for submission to the relevant constituent DBMSs, after which the system must composite the result sets of the subqueries. Because various database management systems employ different query languages, federated database systems can apply wrappers to the subqueries to translate them into the appropriate query languages.
McLeod and Heimbigner were among the first to define a federated database system in the mid-1980s.
A FDBS is one which "define[s] the architecture and interconnect[s] databases that minimize central authority yet support partial sharing and coordination among database systems". This description might not accurately reflect the McLeod/Heimbigner definition of a federated database. Rather, this description fits what McLeod/Heimbigner called a composite database. McLeod/Heimbigner's federated database is a collection of autonomous components that make their data available to other members of the federation through the publication of an export schema and access operations; there is no unified, central schema that encompasses the information available from the members of the federation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is intended for students who want to understand modern large-scale data analysis
systems and database systems. The course covers fundamental principles for understanding
and building syste
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
This course is intended for students who want to understand modern large-scale data analysis systems and database systems. It covers a wide range of topics and technologies, and will prepare students
Data integration involves combining data residing in different sources and providing users with a unified view of them. This process becomes significant in a variety of situations, which include both commercial (such as when two similar companies need to merge their databases) and scientific (combining research results from different bioinformatics repositories, for example) domains. Data integration appears with increasing frequency as the volume (that is, big data) and the need to share existing data explodes.
Data virtualization is an approach to data management that allows an application to retrieve and manipulate data without requiring technical details about the data, such as how it is formatted at source, or where it is physically located, and can provide a single customer view (or single view of any other entity) of the overall data. Unlike the traditional extract, transform, load ("ETL") process, the data remains in place, and real-time access is given to the source system for the data.
In information technology and computer science, especially in the fields of computer programming, operating systems, multiprocessors, and databases, concurrency control ensures that correct results for concurrent operations are generated, while getting those results as quickly as possible. Computer systems, both software and hardware, consist of modules, or components. Each component is designed to operate correctly, i.e., to obey or to meet certain consistency rules.
Analyzing and processing data that are siloed and dispersed among multiple distrustful stakeholders is difficult and can even become impossible when the data are sensitive or confidential. Current data-protection and privacy regulations highly restrict the ...
The isolation level Multiversion Read Committed (RC), offered by many database systems, is known to trade consistency for increased transaction throughput. Sometimes, transaction workloads can be safely executed under RC obtaining the perfect isolation of ...
Data lakes are complex ecosystems where heterogeneity prevails. Raw data of diverse formats are stored and processed, while long and expensive ETL processes are avoided. Apart from data heterogeneity, data lakes also entail hardware heterogeneity. Typical ...